Shaoqu Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/396769/publications.pdf

Version: 2024-02-01

331538 454834 37 992 21 30 citations h-index g-index papers 37 37 37 768 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Deconstruction of high-density polyethylene into liquid hydrocarbon fuels and lubricants by hydrogenolysis over Ru catalyst. Chem Catalysis, 2021, 1, 437-455.	2.9	101
2	Water-assisted selective hydrodeoxygenation of phenol to benzene over the Ru composite catalyst in the biphasic process. Green Chemistry, 2019, 21, 1668-1679.	4.6	68
3	Salting-Out Effect of Dipotassium Hydrogen Phosphate on the Recovery of Acetone, Butanol, and Ethanol from a Prefractionator. Journal of Chemical & Ethanol from a Prefractionator. Journal of Chemical & Ethanol from a Prefractionator.	1.0	57
4	CO ₂ Reduction to Methanol in the Liquid Phase: A Review. ChemSusChem, 2020, 13, 6141-6159.	3.6	54
5	Energy-Saving Recovery of Acetone, Butanol, and Ethanol from a Prefractionator by the Salting-Out Method. Journal of Chemical & Data, 2013, 58, 3297-3303.	1.0	39
6	Saltingâ€out of bioâ€based 2,3â€butanediol from aqueous solutions. Journal of Chemical Technology and Biotechnology, 2017, 92, 122-132.	1.6	37
7	A review of salting-out effect and sugaring-out effect: driving forces for novel liquid-liquid extraction of biofuels and biochemicals. Frontiers of Chemical Science and Engineering, 2021, 15, 854-871.	2.3	36
8	Applications of Cellulose Nanocrystals: A Review. Engineered Science, 2018, , .	1.2	36
9	Saltingâ€out of acetone, 1â€butanol, and ethanol from dilute aqueous solutions. AICHE Journal, 2015, 61, 3470-3478.	1.8	31
10	Salting-out of 1,3-propanediol from aqueous solutions by inorganic electrolytes. Journal of Chemical Technology and Biotechnology, 2016, 91, 2793-2801.	1.6	30
11	Laccase and Xylanase Incubation Enhanced the Sulfomethylation Reactivity of Alkali Lignin. ACS Sustainable Chemistry and Engineering, 2016, 4, 1248-1254.	3.2	30
12	Saltingâ€out effect of potassium pyrophosphate (<scp>K₄P₂O₇</scp>) on the separation of biobutanol from an aqueous solution. Journal of Chemical Technology and Biotechnology, 2016, 91, 1860-1867.	1.6	29
13	Salting-out extraction systems of ethanol and water induced by high-solubility inorganic electrolytes. Journal of Industrial and Engineering Chemistry, 2017, 56, 145-150.	2.9	29
14	Salting-out effect of tripotassium phosphate on the liquid–liquid equilibria of the (water+acetone+1-butanol+ethanol) system and the salting-out recovery. Fluid Phase Equilibria, 2015, 386, 7-12.	1.4	27
15	Highly efficient synthesis and separation of fuel precursors from the concentrated ABE fermentation broth in a biphasic catalytic process. Fuel, 2019, 242, 41-49.	3.4	27
16	Separation of a Biofuel: Recovery of Biobutanol by Saltingâ€Out and Distillation. Chemical Engineering and Technology, 2015, 38, 2181-2188.	0.9	26
17	Separation of acetone: From a water miscible system to an efficient aqueous two-phase system. Separation and Purification Technology, 2018, 192, 55-61.	3.9	25
18	Generic Biphasic Catalytic Approach for Producing Renewable Diesel from Fatty Acids and Vegetable Oils. ACS Catalysis, 2019, 9, 3753-3763.	5 . 5	25

#	Article	IF	CITATIONS
19	Catalytic Transfer Hydrogenation of Furfural for the Production of Ethyl Levulinate: Interplay of Lewis and BrÃ,nsted Acidities. Energy Technology, 2018, 6, 1826-1831.	1.8	24
20	A new process for separating biofuel based on the saltÂ+Â1-butanolÂ+Âwater system. Fuel, 2020, 278, 118402.	3.4	22
21	Creating efficient novel aqueous two-phase systems: Salting-out effect and high solubility of salt. Fluid Phase Equilibria, 2019, 490, 77-85.	1.4	21
22	Mechanistic Insight into Selective Deoxygenation of <scp>l</scp> -Lysine to Produce Biobased Amines. ACS Sustainable Chemistry and Engineering, 2020, 8, 11805-11817.	3.2	21
23	A Shortcut Route to Close Nitrogen Cycle: Bio-Based Amines Production via Selective Deoxygenation of Chitin Monomers over Ru/C in Acidic Solutions. IScience, 2020, 23, 101096.	1.9	20
24	Cleaner production and downstream processing of bio-based 2,3-butanediol: A review. Journal of Cleaner Production, 2022, 343, 131033.	4.6	20
25	Biobutanol recovery from model solutions/fermentation broth using tripotassium phosphate. Biochemical Engineering Journal, 2016, 115, 85-92.	1.8	18
26	Biobutanol recovery from model solutions using potassium pyrophosphate. Journal of Chemical Technology and Biotechnology, 2017, 92, 1229-1235.	1.6	18
27	Saltingâ€out extraction of bioâ€based isobutanol from an aqueous solution. Journal of Chemical Technology and Biotechnology, 2018, 93, 372-384.	1.6	14
28	Recent advances on bio-based isobutanol separation. Energy Conversion and Management: X, 2021, 10, 100059.	0.9	14
29	One-pot production of jet fuels from fatty acids and vegetable oils in biphasic tandem catalytic process. Fuel, 2021, 302, 121060.	3.4	14
30	Sugaring-Out Effects of Sucrose and Glucose on the Liquid–Liquid Equilibria for the (Water +) Tj ETQq0 0 0 rgB	T /Overloo	ck 10 Tf 50 30
31	Salts and 1â€propanol induced aqueous twoâ€phase systems: phase separation and application. Journal of Chemical Technology and Biotechnology, 2019, 94, 2372-2381.	1.6	13
32	Eliminating carbon dioxide emissions at the source by the integration of carbon dioxide capture and utilization over noble metals in the liquid phase. Journal of Catalysis, 2020, 389, 247-258.	3.1	13
33	Assessment of extraction options for a nextâ€generation biofuel: Recovery of bioâ€isobutanol from aqueous solutions. Engineering in Life Sciences, 2021, 21, 653-665.	2.0	12
34	Beyond biodegradation: Chemical upcycling of poly(lactic acid) plastic waste to methyl lactate catalyzed by quaternary ammonium fluoride. Journal of Catalysis, 2021, 402, 61-71.	3.1	12
35	Facile biphasic catalytic process for conversion of monoterpenoids to tricyclic hydrocarbon biofuels. Journal of Energy Chemistry, 2020, 49, 42-50.	7.1	8
36	Synergistic interaction between Cu and ZrO2 promotes ethyl formate hydrogenation to produce methanol. Catalysis Today, 2021, 374, 53-60.	2.2	6

#	Article	IF	CITATIONS
37	One-pot reaction-separation process to produce jet fuel. Energy Conversion and Management: X, 2022, 13, 100155.	0.9	2