
MarÃ-a de Lourdes Albor Aguilera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3967627/publications.pdf

Version: 2024-02-01

MarÃa de Lourdes Albor

#	Article	IF	CITATIONS
1	CdTe mini-modules characterization and photovoltaic performance under outdoors conditions. Revista Mexicana De FÃsica, 2022, 68, .	0.4	0
2	Unveiling the influence of ZnTe and Te layers as part of the back-contact on CdTe solar cells performance. AIP Advances, 2021, 11, .	1.3	5
3	Growing spheroids of lung adenosquamous carcinoma on electrospun poly(Îμ-caprolactone). Bioinspired, Biomimetic and Nanobiomaterials, 2020, 9, 252-256.	0.9	3
4	Incorporation of an efficient <i>β</i> -In ₂ S ₃ thin film as window material into CdTe photovoltaic devices. Materials Research Express, 2019, 6, 125510.	1.6	10
5	Impact of different thermal treatments on ZnS physical properties and their performance in CdTe solar cells. Materials Research Express, 2019, 6, 086461.	1.6	13
6	Shunt resistance and saturation current determination in CdTe and CIGS solar cells. Part 1: a new theoretical procedure and comparison with other methodologies. Semiconductor Science and Technology, 2018, 33, 045007.	2.0	11
7	Shunt resistance and saturation current determination in CdTe and CIGS solar cells. Part 2: application to experimental IV measurements and comparison with other methods. Semiconductor Science and Technology, 2018, 33, 045008.	2.0	6
8	Structural and Optoelectronic Properties of βâ€In ₂ S ₃ Thin Films to be Applied on Cadmium Reduced Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700428.	1.8	9
9	Improvement of the electrical properties of the frontal contact in CdS/CdTe solar cells. Materials Research Express, 2017, 4, 105906.	1.6	2
10	Cu doping concentration effect on the physical properties of CdS thin films obtained by the CBD technique. Materials Research Express, 2017, 4, 086410.	1.6	5
11	Enhancement of CdS/CdTe solar cells by the interbuilding of a nanostructured Te-rich layer. Materials Research Express, 2017, 4, 086403.	1.6	14
12	Influence of CdS Thin Films Growth Related with the Substrate Properties and Conditions Used on CBD Technique. Energy Procedia, 2014, 44, 111-117.	1.8	17
13	Photovoltaic structures based on Cu(In, Ga)Se <inf>2</inf> thin films prepared by thermal co-evaporation. , 2011, , .		0
14	Synthesis of AgInSnS4 thin films by adding tin (Sn) into the chalcopyrite structure of AgInS2 using spray pyrolysis. Thin Solid Films, 2010, 518, 1821-1824.	1.8	1
15	Thermal and optical properties of polycrystalline CdS thin films deposited by the gradient recrystallization and growth (GREG) technique using photoacoustic methods. Thin Solid Films, 2009, 517, 2335-2339.	1.8	13
16	Change from n-type to p-type conductivity on AgInS2 and AgInS2:Sn polycrystalline thin films prepared by spray pyrolysis technique. Thin Solid Films, 2009, 517, 2535-2537.	1.8	12
17	Synthesis of HAp/chitosan composites via electrospinning: Preliminary results. , 2008, , .		1
18	Photoluminescence studies of p-type chalcopyrite AgInS2:Sn. Solar Energy Materials and Solar Cells, 2007, 91, 1483-1487.	6.2	17

MarÃa de Lourdes Albor

#	Article	IF	CITATIONS
19	Photoluminescence studies of chalcopyrite and orthorhombic AgInS2 thin films deposited by spray pyrolysis technique. Thin Solid Films, 2007, 515, 6272-6275.	1.8	31
20	Optical and electrical properties of p-type AgInSnxS2â^'x (x=0–0.04) thin films prepared by spray pyrolysis. Thin Solid Films, 2005, 490, 168-172.	1.8	11
21	Electrical and optical characterization of Na: CuInS2 thin films grown by spray pyrolysis. Thin Solid Films, 2005, 490, 142-145.	1.8	13
22	New window materials used as heterojunction partners on CdTe solar cells. Thin Solid Films, 2000, 361-362, 378-382.	1.8	38
23	Photoluminescence studies of CdS films grown by close-spaced vapor transport hot walls. Journal of Applied Physics, 1999, 86, 3171-3174.	2.5	35
24	Photoacoustic determination of recombination parameters in CdTe/glass system. Journal of Applied Physics, 1998, 83, 3807-3810.	2.5	19
25	Electrical and optical characterization of AgInSnS4 thin films grown by spray pyrolysis. , 0, , .		0
26	Influence of Te layer on CdTe thin films and their performance on CdS/CdTe solar cells. Superficies Y Vacio, 0, 34, .	0.2	0