Horst Stöcker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3967229/publications.pdf

Version: 2024-02-01

174 papers 26,189 citations

50170 46 h-index 161 g-index

174 all docs

174 docs citations

times ranked

174

19440 citing authors

#	Article	IF	CITATIONS
1	A chiral mean-field equation-of-state in UrQMD: effects on the heavy ion compression stage. European Physical Journal C, 2022, 82, 1 .	1.4	12
2	Bose-Einstein condensation in finite drops of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi></mml:math> particles. Physical Review C, 2022, 106, .	1.1	0
3	Higher order conserved charge fluctuations inside the mixed phase. Physical Review C, 2021, 103, .	1.1	8
4	Phase diagram of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi> matter with a Skyrme-like scalar interaction. Physical Review C, 2021, 103, .</mml:math 	1.1	9
5	Repulsive properties of hadrons in lattice QCD data and neutron stars. Physical Review C, 2021, 103, .	1.1	12
6	Traces of the nuclear liquid-gas phase transition in the analytic properties of hot QCD. Physical Review C, 2020, 101, .	1.1	11
7	Momentum-dependent potential and collective flows within the relativistic quantum molecular dynamics approach based on relativistic mean-field theory. Physical Review C, 2020, 102, .	1.1	27
8	Critical point fluctuations: Finite size and global charge conservation effects. Physical Review C, 2020, 102, .	1.1	20
9	Bose-Einstein condensation phenomenology in systems with repulsive interactions. Physical Review C, 2020, 102, .	1.1	11
10	Possible Bose-Einstein condensation of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>\hat{l}±</mml:mi></mml:math> particles in the ground state of nuclear matter. Physical Review C, 2020, 101, .	1.1	8
11	Equation of state for hot QCD and compact stars from a mean-field approach. Physical Review C, 2020, 101, .	1.1	48
12	Canonical transformation path to gauge theories of gravity-II: Space-time coupling of spin-0 and spin-1 particle fields. International Journal of Modern Physics E, 2019, 28, 1950007.	0.4	9
13	Lattice-based QCD equation of state at finite baryon density: Cluster Expansion Model. Nuclear Physics A, 2019, 982, 859-862.	0.6	10
14	Classify QCD phase transition with deep learning. Nuclear Physics A, 2019, 982, 867-870.	0.6	5
15	QCD at high density: Equation of state for nuclear collisions and neutron stars. Nuclear Physics A, 2019, 982, 891-894.	0.6	11
16	Hagedorn bag-like model with a crossover transition meets lattice QCD. Physical Review C, 2019, 99, .	1.1	11
17	Hadron yields and fluctuations at energies available at the CERN Super Proton Synchrotron: System-size dependence from Pb + Pb to p+p collisions. Physical Review C, 2019, 99, .	1.1	14
18	Phase transition in an interacting boson system at finite temperatures. Journal of Physics G: Nuclear and Particle Physics, 2019, 46, 035002.	1.4	12

#	Article	IF	CITATIONS
19	In memory: Prof. Raj K. Gupta (1938–2019). International Journal of Modern Physics E, 2019, 28, 1977001.	0.4	О
20	Phase transitions and Bose-Einstein condensation in \hat{l}_{\pm} -nucleon matter. Physical Review C, 2019, 99, .	1.1	14
21	Noncongruent phase transitions in strongly interacting matter within the quantum van der Waals model. Physical Review C, 2019, 99, .	1.1	16
22	Signatures of Quark-Hadron Phase Transitions in General-Relativistic Neutron-Star Mergers. Physical Review Letters, 2019, 122, 061101.	2.9	248
23	Sensitivity of the excitation functions of collective flow to relativistic scalar and vector meson interactions in the relativistic quantum molecular dynamics model RQMD.RMF. Physical Review C, 2019, 100, .	1.1	18
24	An equation-of-state-meter of quantum chromodynamics transition from deep learning. Nature Communications, 2018, 9, 210.	5.8	118
25	Flavor-dependent eigenvolume interactions in a hadron resonance gas. Nuclear Physics A, 2018, 974, 22-34.	0.6	32
26	The enhancement of $v4$ in nuclear collisions at the highest densities signals a first-order phase transition. European Physical Journal A, 2018, 54, 1.	1.0	12
27	Quadratic curvature theories formulated as covariant canonical gauge theories of gravity. Physical Review D, 2018, 98, .	1.6	15
28	Monte Carlo approach to the excluded-volume hadron resonance gas in grand canonical and canonical ensembles. Physical Review C, 2018, 98, .	1.1	12
29	Cumulants of the baryon number from central Au+Au collision at Elab=1.23 GeV/nucleon reveal the nuclear mean-field potentials. Physical Review C, 2018, 98, .	1.1	9
30	Statistical hadron-gas treatment of systems created in proton-proton interactions at energies available at the CERN Super Proton Synchrotron. Physical Review C, 2018, 98, .	1.1	8
31	Finite resonance widths influence the thermal-model description of hadron yields. Physical Review C, 2018, 98, .	1.1	23
32	van der Waals Interactions and Hadron Resonance Gas: Role of resonance widths modeling on conserved charges fluctuations. EPJ Web of Conferences, 2018, 171, 14006.	0.1	1
33	Multiplicity dependence of light nuclei production at LHC energies in the canonical statistical model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 785, 171-174.	1.5	56
34	Critical point of nuclear matter and beam-energy dependence of net-proton number fluctuations. Physical Review C, 2018, 98, .	1.1	23
35	Gravitational waves from binary compact star mergers in the context of strange matter. EPJ Web of Conferences, 2018, 171, 20004.	0.1	7
36	Identifying QCD Transition Using Deep Learning. EPJ Web of Conferences, 2018, 171, 16005.	0.1	2

#	ARTICLE Cluster expansion model for QCD baryon number fluctuations: No phase transition at <mml:math< th=""><th>IF</th><th>CITATIONS</th></mml:math<>	IF	CITATIONS
37	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mrow><mml:mi>μ</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow>	:mi6B <td>m&&ni>ath>.</td>	m && ni>ath>.
38	Modeling baryonic interactions with the Clausius-type equation of state. European Physical Journal A, 2018, 54, 1.	1.0	10
39	Enhancement of elliptic flow can signal a first-order phase transition in high-energy heavy-ion collisions. European Physical Journal A, 2018, 54, 1.	1.0	24
40	Topical Issue on Frontiers in Nuclear, Heavy Ion and Strong Field Physics. European Physical Journal A, 2018, 54, 1.	1.0	1
41	Beth-Uhlenbeck approach for repulsive interactions between baryons in a hadron gas. Physical Review C, 2018, 97, .	1.1	21
42	Nuclear interactions and net-proton number fluctuations in heavy ion collisions at the SIS18 accelerator. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 785, 40-45.	1.5	7
43	Surprisingly large uncertainties in temperature extraction from thermal fits to hadron yield data at LHC. Journal of Physics G: Nuclear and Particle Physics, 2017, 44, 055103.	1.4	29
44	Equation of state dependence of directed flow in a microscopic transport model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 769, 543-548.	1.5	37
45	Bose–Einstein condensation and liquid–gas phase transition in strongly interacting matter composed of <i>α</i> particles. Journal of Physics G: Nuclear and Particle Physics, 2017, 44, 125102.	1.4	21
46	New scenarios for hard-core interactions in a hadron resonance gas. Physical Review C, 2017, 95, .	1.1	34
47	Examination of the sensitivity of the thermal fits to heavy-ion hadron yield data to the modeling of the eigenvolume interactions. Physical Review C, 2017, 95, .	1.1	27
48	Concluding Remarks: Connecting Relativistic Heavy Ion Collisions and Neutron Star Mergers by the Equation of State of Dense Hadron- and Quark Matter as signalled by Gravitational Waves. Journal of Physics: Conference Series, 2017, 878, 012031.	0.3	32
49	van der Waals Interactions in Hadron Resonance Gas: From Nuclear Matter to Lattice QCD. Physical Review Letters, 2017, 118, 182301.	2.9	132
50	Rotational properties of hypermassive neutron stars from binary mergers. Physical Review D, 2017, 96, .	1.6	122
51	Canonical transformation path to gauge theories of gravity. Physical Review D, 2017, 95, .	1.6	31
52	Multicomponent van der Waals equation of state: Applications in nuclear and hadronic physics. Physical Review C, 2017, 96, .	1.1	43
53	Jet-induced medium excitations in \hat{I}^3 -hadron correlation. Nuclear and Particle Physics Proceedings, 2017, 289-290, 317-320.	0.2	O
54	Repulsive baryonic interactions and lattice QCD observables at imaginary chemical potential. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 775, 71-78.	1.5	66

#	Article	IF	CITATIONS
55	Excluded-volume effects for a hadron gas in Yang-Mills theory. Physical Review D, 2017, 95, .	1.6	19
56	Analysis of hadron yield data within hadron resonance gas model with multi-component eigenvolume corrections. Journal of Physics: Conference Series, 2017, 779, 012078.	0.3	6
57	Covariant Hamiltonian Representation of Noether's Theorem and Its Application to SU(N) Gauge Theories. , 2017, , 317-331.		1
58	Critical Fluctuations in Models with van der Waals Interactions. Acta Physica Polonica B, Proceedings Supplement, 2017, 10, 753.	0.0	2
59	Gauge theory by canonical transformations. International Journal of Modern Physics E, 2016, 25, 1642005.	0.4	3
60	Jet-induced medium excitation in heavy-ion collisions. Nuclear Physics A, 2016, 956, 605-608.	0.6	2
61	Examination of directed flow as a signature of the softest point of the equation of state in QCD matter. Physical Review C, $2016, 94, .$	1.1	63
62	Electromagnetic probes of a pure-glue initial state in nucleus-nucleus collisions at energies available at the CERN Large Hadron Collider. Physical Review C, 2016 , 94 , .	1.1	24
63	Fast dynamical evolution of a hadron resonance gas via Hagedorn states. Physical Review C, 2016, 94, .	1.1	13
64	Glueballs amass at the RHIC and LHC! The early quarkless first-order phase transition at⟨i>T⟨ i>= 270 MeVâ€"from pure Yangâ€"Mills glue plasma to Hagedorn glueball states. Journal of Physics G: Nuclear and Particle Physics, 2016, 43, 015105.	1.4	22
65	Extended canonical field theory of matter and spaceâ€time. Astronomische Nachrichten, 2015, 336, 731-738.	0.6	8
66	FAIR - Cosmic Matter in the Laboratory. Journal of Physics: Conference Series, 2015, 623, 012026.	0.3	4
67	40 years of collective flow in relativistic heavy ion collisionsâ€"the barometer for primordial hot and dense QCD matter. Journal of Physics G: Nuclear and Particle Physics, 2014, 41, 120301.	1.4	9
68	FAIR – Cosmic matter in the laboratory. Astronomische Nachrichten, 2014, 335, 581-586.	0.6	1
69	Organotypic slice cultures of human glioblastoma reveal different susceptibilities to treatments. Neuro-Oncology, 2013, 15, 670-681.	0.6	96
70	European Facility for Antiproton and Ion Research (FAIR): the new international center for fundamental physics and its research program. Physics-Uspekhi, 2012, 55, 582-602.	0.8	26
71	Baryon resonances in a chiral hadronic model for the QCD equation of state. Physical Review C, 2012, 85 , .	1.1	8
72	Relativistic protons for image-guided stereotactic radiosurgery. Journal of Physics: Conference Series, 2012, 373, 012016.	0.3	7

#	Article	IF	CITATIONS
73	Anti- and Hypermatter Research at the Facility for Antiproton and Ion Research FAIR. Journal of Physics: Conference Series, 2012, 389, 012022.	0.3	3
74	Resonance states in an effective chiral hadronic model. Open Physics, 2012, 10, .	0.8	1
75	Production of hypernuclei in peripheral collisions of relativistic ions. Nuclear Physics A, 2012, 881, 228-239.	0.6	15
76	THE FACILITY FOR ANTIPROTON AND ION RESEARCH FAIR. , 2012, , .		0
77	The FAIR start. Nuclear Physics A, 2011, 855, 506-509.	0.6	15
78	The Facility for Antiproton and Ion Research FAIR Cosmic Matter in the Laboratory. Nuclear Physics A, 2011, 862-863, 92-97.	0.6	6
79	Modeling radiationÂeffects at the tissue level. European Physical Journal D, 2010, 60, 171-176.	0.6	9
80	Tissue slice cultures from humans or rodents: a new tool to evaluate biological effects of heavy ions. Radiation and Environmental Biophysics, 2010, 49, 457-462.	0.6	13
81	Constraints on models for the initial collision geometry in ultrarelativistic heavy ion collisions. Physical Review C, 2010, 81 , .	1.1	8
82	PROTO-NEUTRON AND NEUTRON STARS. , 2010, , .		0
83	Strangeness at the International Facility for Antiproton and Ion Research. Journal of Physics G: Nuclear and Particle Physics, 2009, 36, 064036.	1.4	1
84	The âŸ` <i>m_T</i> ⟩ excitation function: freeze-out and equation of state dependence. Journal of Physics G: Nuclear and Particle Physics, 2009, 36, 055104.	1.4	31
85	Strange and non-strange particle production in antiproton–nucleus collisions in the UrQMD model. Journal of Physics G: Nuclear and Particle Physics, 2009, 36, 064049.	1.4	1
86	Strangeness at the international Facility for Antiproton and Ion Research. Progress in Particle and Nuclear Physics, 2009, 62, 313-317.	5.6	11
87	Highlights of strangeness physics at FAIR. Nuclear Physics A, 2009, 827, 624c-629c.	0.6	12
88	Exclusion of black hole disaster scenarios at the LHC. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2009, 672, 71-76.	1.5	14
89	Effects of a phase transition on HBT correlations in an integrated Boltzmann+hydrodynamics approach. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2009, 674, 111-116.	1.5	45
90	Strangeness fluctuations and MEMO production at FAIR. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2009, 676, 126-131.	1.5	32

#	Article	IF	CITATIONS
91	The effect of "pre-formed―hadron potentials on the dynamics of heavy ion collisions and the HBT puzzle. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2008, 659, 525-530.	1.5	46
92	Fully integrated transport approach to heavy ion reactions with an intermediate hydrodynamic stage. Physical Review C, 2008, 78, .	1.1	309
93	POPULATION OF MULTI-QUARK STATES IN EXOTIC MULTIPLETS AND THERMALIZATION IN ULTRA-RELATIVISTIC HEAVY ION COLLISIONS. International Journal of Modern Physics E, 2008, 17, 965-1014.	0.4	5
94	Jet propagation and Mach cones in $(3+1)d$ ideal hydrodynamics. Journal of Physics G: Nuclear and Particle Physics, 2008, 35, 104106.	1.4	22
95	QCD plasma thermalization, collective flow and extraction of shear viscosity. Journal of Physics G: Nuclear and Particle Physics, 2008, 35, 104016.	1.4	9
96	Neutron stars in a chiral model with finite temperature. Journal of Physics G: Nuclear and Particle Physics, 2008, 35, 014060. Perturbative OCD Calculations of Elliptic Flow and Shear Viscosity in small math	1.4	3
97	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>Au</mml:mi> <collisions at<mml:math="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msort><mml:msub><mml:mi><color="mml:mi><mml:mi>N</mml:mi>N</color="mml:mi></mml:mi>N<mml:mi>NNN<mml:mi>NNNN<mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi< td=""><td>2.9 </td></mml:mi<><td>153 > </td></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:msub></mml:msort></collisions>	2.9 	153 >
98	Physical Review Letters, 2008, 101, 082302. MACH CONES AND HYDRODYNAMIC FLOW: PROBING BIG BANG MATTER IN THE LABORATORY. International Journal of Modern Physics E, 2007, 16, 3082-3099.	0.4	9
99	MACH CONES AND JET ENERGY LOSS STUDIES IN FULL (3+1)DIMENSIONAL IDEAL HYDRODYNAMICS. International Journal of Modern Physics E, 2007, 16, 1957-1963.	0.4	0
100	SIGNATURES FOR BLACK HOLE PRODUCTION FROM HADRONIC OBSERVABLES AT THE LARGE HADRON COLLIDER. International Journal of Modern Physics E, 2007, 16, 841-851.	0.4	6
101	Early black hole signals at the LHC. AIP Conference Proceedings, 2007, , .	0.3	3
102	Has the QCD Critical Point Been Signaled by Observations at the BNL Relativistic Heavy Ion Collider?. Physical Review Letters, 2007, 98, 092301.	2.9	225
103	Transport model analysis of the transverse momentum and rapidity dependence of pion interferometry at SPS energies. Journal of Physics G: Nuclear and Particle Physics, 2007, 34, 537-548.	1.4	10
104	Pion freeze-out as seen through HBT correlations in heavy ion collisions from FAIR/AGS to RHIC energies. Journal of Physics G: Nuclear and Particle Physics, 2007, 34, 2037-2044.	1.4	10
105	Black holes at LHC?. Journal of Physics G: Nuclear and Particle Physics, 2007, 34, S535-S542.	1.4	29
106	An introduction to mini black holes at LHC. Brazilian Journal of Physics, 2007, 37, 836-839.	0.7	4
107	Medium modifications of the nucleon–nucleon elastic cross section in neutron-rich intermediate energy HICs. Journal of Physics G: Nuclear and Particle Physics, 2006, 32, 407-415.	1.4	59
108	Elliptic flow analysis at RHIC with the Lee–Yang zeros method in a relativistic transport approach. Journal of Physics G: Nuclear and Particle Physics, 2006, 32, 2181-2186.	1.4	15

#	Article	IF	Citations
109	Probing the equation of state with pions. Journal of Physics G: Nuclear and Particle Physics, 2006, 32, 151-164.	1.4	88
110	Event-by-event analysis of baryon-strangeness correlations: Pinning down the critical temperature and volume of quark-gluon-plasma formation. Physical Review C, 2006, 73, .	1.1	16
111	Transport model analysis of particle correlations in relativistic heavy ion collisions at femtometer scales. Physical Review C, 2006, 73, .	1.1	14
112	Probing the symmetry energy and the degree of isospin equilibrium. Physical Review C, 2006, 73, .	1.1	28
113	Probing the density dependence of the symmetry potential at low and high densities. Physical Review C, 2005, 72, .	1.1	74
114	Elliptic flow analysis in Au+Au collisions atsNN=200GeV: Fluctuations vs non-flow effects. Physical Review C, 2005, 72, .	1.1	55
115	Probing the density dependence of the symmetry potential in intermediate-energy heavy ion collisions. Journal of Physics G: Nuclear and Particle Physics, 2005, 31, 1359-1374.	1.4	56
116	Dynamics and freeze-out of hadron resonances at RHIC. Journal of Physics G: Nuclear and Particle Physics, 2004, 30, S111-S118.	1.4	50
117	phgr-meson production at RHIC, strong colour fields and intrinsic transverse momenta. Journal of Physics G: Nuclear and Particle Physics, 2004, 30, L35-L41.	1.4	4
118	OBSERVABLES FROM LARGE EXTRA DIMENSIONS. International Journal of Modern Physics D, 2004, 13, 1453-1460.	0.9	1
119	Particle Ratios from a Chiral SU(3) Model. Acta Physica Hungarica A Heavy Ion Physics, 2004, 21, 151-156.	0.4	4
120	Model dependence of lateral distribution functions of high energy cosmic ray air showers. Astroparticle Physics, 2004, 21, 87-94.	1.9	38
121	From the Dyson–Schwinger to the transport equation in the background field gauge of QCD. Nuclear Physics A, 2003, 714, 293-334.	0.6	12
122	Geant4â€"a simulation toolkit. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 506, 250-303.	0.7	17,893
123	Effects of strong color fields on baryon dynamics. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2003, 551, 115-120.	1.5	26
124	Black hole relics in large extra dimensions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2003, 566, 233-239.	1.5	21
125	Phase Transition to Hyperon Matter in Neutron Stars. Physical Review Letters, 2002, 89, 171101.	2.9	123
126	Quasistable black holes at the Large Hadron Collider. Physical Review D, 2002, 66, .	1.6	66

#	Article	IF	CITATIONS
127	In-medium vector meson properties and low-mass dilepton production from hot hadronic matter. Physical Review C, 2002, 66, .	1.1	16
128	Anisotropic flow in ultra-relativistic heavy-ion collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2002, 526, 309-314.	1.5	102
129	Black hole production in large extra dimensions at the Tevatron: aÂchance to observe a first glimpse of TeV scale gravity. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2002, 548, 73-76.	1.5	45
130	Bottom and charm production at LHC and RHIC. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2001, 498, 163-168.	1.5	8
131	Partonic scattering cross sections in the QCD medium. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2001, 520, 233-242.	1.5	12
132	Damping scales of neutralino cold dark matter. Physical Review D, 2001, 64, .	1.6	224
133	Meson mass modification in strange hadronic matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1999, 465, 282-290.	1.5	6
134	Chemical freezeout in relativisticA+Acollisions: is it close to the quark-gluon plasma?. Journal of Physics G: Nuclear and Particle Physics, 1998, 24, 1777-1784.	1.4	12
135	Hadron production from a hadronizing quark - gluon plasma. Journal of Physics G: Nuclear and Particle Physics, 1997, 23, 2047-2050.	1.4	1
136	Detectability of strange matter in heavy ion experiments. Physical Review C, 1997, 55, 3038-3046.	1.1	69
137	Disappearance of flow. Physical Review C, 1995, 51, 3320-3325.	1.1	66
138	The phase transition to the quark-gluon plasma and its effect on hydrodynamic flow. Acta Physica Hungarica A Heavy Ion Physics, 1995, 1, 309-322.	0.4	96
139	Observable consequences of chemical equilibration in energetic heavy ion collisions. Physical Review C, 1994, 50, 2085-2095.	1.1	38
140	Kaon effective mass and energy in dense nuclear matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1994, 334, 268-274.	1.5	73
141	Nuclear Cluster Equation of State. NATO ASI Series Series B: Physics, 1994, , 193-203.	0.2	0
142	Pion chemical potentials in heavy-ion collisions: relativistic quantum molecular dynamic analysis. Zeitschrift Für Physik C-Particles and Fields, 1993, 58, 461-464.	1.5	8
143	Strange hadronic matter. Physical Review Letters, 1993, 71, 1328-1331.	2.9	206
144	Metastable exotic multihypernuclear objects. Physical Review C, 1992, 46, 322-329.	1.1	131

#	Article	IF	CITATIONS
145	Quasi-confinement in theSU(3)-gluon plasma. Zeitschrift Fýr Physik C-Particles and Fields, 1992, 56, 325-337.	1.5	26
146	Non-perturbative effects in the SU(3) gluon plasma. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1992, 278, 19-23.	1.5	38
147	Distillation and survival of strange-quark-matter droplets in ultrarelativistic heavy-ion collisions. Physical Review D, 1991, 44, 3517-3529.	1.6	106
148	High Energy Nuclear Fluid Dynamics. Physica Scripta, 1990, T32, 195-201.	1.2	2
149	Poincar \tilde{A} © invariant Hamiltonian dynamics: Modelling multi-hadronic interactions in a phase space approach. Annals of Physics, 1989, 192, 266-306.	1.0	399
150	The quantum statistical model of fragment formation: Entropy and temperature extraction in heavy ion collisions. Nuclear Physics A, 1988, 476, 718-772.	0.6	118
151	Multifragmentation and dissociation in heavy ion collisions. Physical Review C, 1988, 37, 1048-1052.	1.1	18
152	Creation of strange-quark-matter droplets as a unique signature for quark-gluon plasma formation in relativistic heavy-ion collisions. Physical Review D, 1988, 38, 2797-2807.	1.6	136
153	Mean field effects in hot compressed nuclear matter. Physical Review C, 1988, 37, 1020-1025.	1.1	8
154	Separation of strangeness from antistrangeness in the phase transition from quark to hadron matter: Possible formation of strange quark matter in heavy-ion collisions. Physical Review Letters, 1987, 58, 1825-1828.	2.9	253
155	Evolution of 4Ï€observables in the Vlasov-Uehling-Uhlenbeck theory and the transverse momentum transfer as a barometer for hadronic matter. Physical Review C, 1987, 36, 220-229.	1.1	54
156	Decay of instable Li, Be, and B fragments and the distortion of temperature measurements in heavy ion collisions. Physical Review C, 1987, 35, 1311-1315.	1.1	26
157	Importance of Momentum-Dependent Interactions for the Extraction of the Nuclear Equation of State from High-Energy Heavy-Ion Collisions. Physical Review Letters, 1987, 58, 1926-1929.	2.9	388
158	Mean field model for relativistic heavy ion collisions. Zeitschrift Fýr Physik A, Atomic Nuclei, 1987, 326, 269-277.	0.3	3
159	High energy heavy ion collisionsâ€"probing the equation of state of highly excited hardronic matter. Physics Reports, 1986, 137, 277-392.	10.3	933
160	Temperatures in heavy-ion collisions from pion multiplicities. Nuclear Physics A, 1986, 452, 723-737.	0.6	55
161	Intranuclear cascade models lack dynamic flow. Physical Review C, 1986, 33, 867-875.	1.1	23
162	Hot Nuclear Matter. Scientific American, 1985, 252, 76-87.	1.0	18

#	Article	IF	CITATIONS
163	Longitudinal momentum transfer and the nucleon's mean free path in medium energy heavy ion collisions - TDHF versus Vlasov-Uehling-Uhlenbeck theory. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1985, 163, 59-65.	1.5	76
164	Fragment yields and phase coexistence in nuclear collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1985, 164, 265-268.	1.5	17
165	Stopping power, equilibration, and collective flow in the reactions Ar + Pb and Nb + Nb — A theoretical analysis. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1985, 162, 47-54.	1.5	85
166	Further evidence for a stiff nuclear equation of state from a transverse-momentum analysis of Ar(1800 MeV/nucleon) + KCl. Physical Review C, 1985, 32, 346-348.	1.1	95
167	Prospects of intermediate energy nuclear collisions. Nuclear Physics A, 1983, 400, 63-93.	0.6	93
168	Time-dependent Hartree-Fock studies of superheavy molecules. Physical Review C, 1983, 28, 228-236.	1.1	11
169	Fragment emission in high-energy heavy-ion reactions. Physical Review C, 1983, 28, 2001-2012.	1.1	38
170	Macroscopic nucleon-nucleon correlations caused by the bounce-off process in energetic collisions of heavy nuclei. Physical Review C, 1982, 25, 2482-2490.	1.1	26
171	Pion bremsstrahlung and critical phenomena in relativistic nuclear collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1980, 93, 243-246.	1.5	57
172	Collective Sideward Flow of Nuclear Matter in Violent High-Energy Heavy-Ion Collisions. Physical Review Letters, 1980, 44, 725-728.	2.9	219
173	On the possibility of detecting density isomers in high energy heavy ion collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1979, 81, 303-307.	1.5	64
174	Possibility of Detecting Density Isomers in High-Density Nuclear Mach Shock Waves. Physical Review Letters, 1976, 36, 88-91.	2.9	147