Anthony Sclafani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3967039/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dietary obesity in adult rats: Similarities to hypothalamic and human obesity syndromes. Physiology and Behavior, 1976, 17, 461-471.	2.1	600
2	Carbohydrate taste, appetite, and obesity: An overview. Neuroscience and Biobehavioral Reviews, 1987, 11, 131-153.	6.1	247
3	Neural pathways involved in the ventromedial hypothalamic lesion syndrome in the rat Journal of Comparative and Physiological Psychology, 1971, 77, 70-96.	1.8	187
4	Oral and postoral determinants of food reward. Physiology and Behavior, 2004, 81, 773-779.	2.1	181
5	Hyperphagia produced by knife cuts between the medial and lateral hypothalamus in the rat. Physiology and Behavior, 1969, 4, 533-537.	2.1	172
6	Flavor preferences conditioned by intragastric Polycose infusions: A detailed analysis using an electronic esophagus preparation. Physiology and Behavior, 1990, 47, 63-77.	2.1	171
7	Role of gut nutrient sensing in stimulating appetite and conditioning food preferences. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R1119-R1133.	1.8	160
8	Gut–brain nutrient signaling. Appetition vs. satiation. Appetite, 2013, 71, 454-458.	3.7	155
9	Glucose- and fructose-conditioned flavor preferences in rats: Taste versus postingestive conditioning. Physiology and Behavior, 1994, 56, 399-405.	2.1	153
10	Qualitative differences in polysaccharide and sugar tastes in the rat: A two-carbohydrate taste model. Neuroscience and Biobehavioral Reviews, 1987, 11, 187-196.	6.1	137
11	Learned Controls of Ingestive Behaviour. Appetite, 1997, 29, 153-158.	3.7	123
12	Flavor preferences conditioned by intragastric fat infusions in rats. Physiology and Behavior, 1989, 46, 403-412.	2.1	119
13	Post-ingestive positive controls of ingestive behavior. Appetite, 2001, 36, 79-83.	3.7	117
14	Sugar and fat conditioned flavor preferences in C57BL/6J and 129 mice: oral and postoral interactions. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R712-R720.	1.8	114
15	T1R3 taste receptor is critical for sucrose but not Polycose taste. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R866-R876.	1.8	113
16	How food preferences are learned: laboratory animal models. Proceedings of the Nutrition Society, 1995, 54, 419-427.	1.0	110
17	Selective effects of vagal deafferentation and celiac–superior mesenteric ganglionectomy on the reinforcing and satiating action of intestinal nutrients. Physiology and Behavior, 2003, 78, 285-294.	2.1	108
18	Reinforcement value of sucrose measured by progressive ratio operant licking in the rat. Physiology and Behavior. 2003. 79. 663-670.	2.1	108

#	Article	IF	CITATIONS
19	Oxytocin knockout mice demonstrate enhanced intake of sweet and nonsweet carbohydrate solutions. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R1828-R1833.	1.8	106
20	Conditioned Flavor Avoidance, Preference, and Indifference Produced by Intragastric Infusions of Galactose, Glucose, and Fructose in Rats. Physiology and Behavior, 1999, 67, 227-234.	2.1	103
21	The sixth taste?. Appetite, 2004, 43, 1-3.	3.7	100
22	Fat appetite in rats: Flavor preferences conditioned by nutritive and non-nutritive oil emulsions. Appetite, 1990, 15, 189-197.	3.7	98
23	Development of learned flavor preferences. Developmental Psychobiology, 2006, 48, 380-388.	1.6	98
24	Fat appetite in rats: The response of infant and adult rats to nutritive and non-nutritive oil emulsions. Appetite, 1990, 15, 171-188.	3.7	97
25	Carbohydrate-induced hyperphagia and obesity in the rat: Effects of saccharide type, form, and taste. Neuroscience and Biobehavioral Reviews, 1987, 11, 155-162.	6.1	96
26	Fat and carbohydrate preferences in mice: the contribution of α-gustducin and Trpm5 taste-signaling proteins. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1504-R1513.	1.8	95
27	The effects of pimozide on the consumption of a palatable saccharin-glucose solution in the rat. Pharmacology Biochemistry and Behavior, 1981, 15, 435-442.	2.9	94
28	Carbohydrate taste preferences in rats: Glucose, sucrose, maltose, fructose and polycose compared. Physiology and Behavior, 1987, 40, 563-568.	2.1	94
29	Effects of age, sex, and prior body weight on the development of dietary obesity in adult rats. Physiology and Behavior, 1977, 18, 1021-1026.	2.1	93
30	Nutrient-conditioned flavor preference and acceptance in rats: Effects of deprivation state and nonreinforcement. Physiology and Behavior, 1994, 56, 701-707.	2.1	93
31	Mechanisms for Sweetness. Journal of Nutrition, 2012, 142, 1134S-1141S.	2.9	90
32	Intragastric infusion of denatonium conditions flavor aversions and delays gastric emptying in rodents. Physiology and Behavior, 2008, 93, 757-765.	2.1	89
33	Paraventricular hypothalamic lesions and medial hypothalamic knife cuts produce similar hyperphagia syndromes Behavioral Neuroscience, 1983, 97, 970-983.	1.2	87
34	Gut T1R3 sweet taste receptors do not mediate sucrose-conditioned flavor preferences in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R1643-R1650.	1.8	84
35	Species differences in polysaccharide and sugar taste preferences. Neuroscience and Biobehavioral Reviews, 1987, 11, 231-240.	6.1	82
36	Hyperphagia and obesity produced by parasagittal and coronal hypothalamic knife cuts: Further evidence for a longitudinal feeding inhibitory pathway Journal of Comparative and Physiological Psychology, 1977, 91, 1000-1018.	1.8	79

#	Article	IF	CITATIONS
37	Sterch-based conditioned flavor preferences in rats: Influence of taste, calories and CS-US delay. Appetite, 1988, 11, 179-200.	3.7	79
38	Hedonic response of rats to polysaccharide and sugar solutions. Neuroscience and Biobehavioral Reviews, 1987, 11, 173-180.	6.1	77
39	Rats show only a weak preference for the artificial sweetener aspartame. Physiology and Behavior, 1986, 37, 253-256.	2.1	76
40	Conditioned food preferences. Bulletin of the Psychonomic Society, 1991, 29, 256-260.	0.2	75
41	Increased flavor acceptance and preference conditioned by the postingestive actions of glucose. Physiology and Behavior, 1998, 64, 483-492.	2.1	75
42	Pharmacology of Flavor Preference Conditioning in Sham-Feeding Rats. Pharmacology Biochemistry and Behavior, 1999, 64, 573-584.	2.9	75
43	Differential Reinforcing and Satiating Effects of Intragastric Fat and Carbohydrate Infusions in Rats. Physiology and Behavior, 1999, 66, 381-388.	2.1	75
44	Activation of dopamine D1â€like receptors in nucleus accumbens is critical for the acquisition, but not the expression, of nutrientâ€conditioned flavor preferences in rats. European Journal of Neuroscience, 2008, 27, 1525-1533.	2.6	75
45	Vagotomy blocks hypothalamic hyperphagia in rats on a chow diet and sucrose solution, but not on a palatable mixed diet Journal of Comparative and Physiological Psychology, 1981, 95, 720-734.	1.8	74
46	Dopamine and learned food preferences. Physiology and Behavior, 2011, 104, 64-68.	2.1	74
47	Effects of quinine adulterated diets on the food intake and body weight of obese and non-obese hypothalamic hyperphagic rats. Physiology and Behavior, 1976, 16, 631-640.	2.1	73
48	Sham-Feeding response of rats to polycose and sucrose. Neuroscience and Biobehavioral Reviews, 1987, 11, 215-222.	6.1	73
49	Sucrose and polysaccharide induced obesity in the rat. Physiology and Behavior, 1984, 32, 169-174.	2.1	72
50	Post-oral appetite stimulation by sugars and nonmetabolizable sugar analogs. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R840-R853.	1.8	72
51	Starch and sugar tastes in rodents: An update. Brain Research Bulletin, 1991, 27, 383-386.	3.0	71
52	Conditioned enhancement of flavor evaluation reinforced by intragastric glucose. Physiology and Behavior, 2001, 74, 495-505.	2.1	71
53	The relationship between food reward and satiation revisited. Physiology and Behavior, 2004, 82, 89-95.	2.1	71
54	On the role of the mouth and gut in the control of saccharin and sugar intake: A reexamination of the sham-feeding preparation. Brain Research Bulletin, 1985, 14, 569-576.	3.0	69

#	Article	IF	CITATIONS
55	Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R552-R560.	1.8	69
56	Abdominal vagotomy does not block carbohydrate-conditioned flavor preferences in rats. Physiology and Behavior, 1996, 60, 447-453.	2.1	68
57	Naltrexone fails to block the acquisition or expression of a flavor preference conditioned by intragastric carbohydrate infusions. Pharmacology Biochemistry and Behavior, 2000, 67, 545-557.	2.9	68
58	Saccharin as a Sugar Surrogate Revisited. Appetite, 2002, 38, 155-160.	3.7	68
59	Effects of lesions in the hypothalamus and amygdala on feeding behavior in the rat Journal of Comparative and Physiological Psychology, 1970, 72, 394-403.	1.8	67
60	Conditioned acceptance and preference but not altered taste reactivity responses to bitter and sour flavors paired with intragastric glucose infusion. Physiology and Behavior, 2003, 78, 173-183.	2.1	67
61	PVN-hindbrain pathway involved in the hypothalamic hyperphagia-obesity syndrome. Physiology and Behavior, 1988, 42, 517-528.	2.1	66
62	Dietary fat-induced hyperphagia in rats as a function of fat type and physical form. Physiology and Behavior, 1989, 45, 937-946.	2.1	66
63	D1 but not D2 dopamine receptor antagonism blocks the acquisition of a flavor preference conditioned by intragastric carbohydrate infusions. Pharmacology Biochemistry and Behavior, 2001, 68, 709-720.	2.9	66
64	Post-oral infusion sites that support glucose-conditioned flavor preferences in rats. Physiology and Behavior, 2010, 99, 402-411.	2.1	66
65	Flavor preferences conditioned by intragastric fructose and glucose: differences in reinforcement potency. Physiology and Behavior, 2001, 72, 691-703.	2.1	65
66	Conditioned enhancement of flavor evaluation reinforced by intragastric glucose: I. Physiology and Behavior, 2001, 74, 481-493.	2.1	65
67	Critical role of amygdala in flavor but not taste preference learning in rats. European Journal of Neuroscience, 2005, 22, 1767-1774.	2.6	64
68	Differential effects of sucrose and fructose on dietary obesity in four mouse strains. Physiology and Behavior, 2010, 101, 331-343.	2.1	64
69	Comparison of ovarian and hypothalamic obesity syndromes in the female rat: Effects of diet palability on food intake and body weight Journal of Comparative and Physiological Psychology, 1977, 91, 381-392.	1.8	63
70	Taste preference thresholds for polycose, maltose, and sucrose in rats. Neuroscience and Biobehavioral Reviews, 1987, 11, 181-185.	6.1	63
71	Sex differences in polysaccharide and sugar preferences in rats. Neuroscience and Biobehavioral Reviews, 1987, 11, 241-251.	6.1	63
72	Rapid post-oral stimulation of intake and flavor conditioning by glucose and fat in the mouse. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R1635-R1647.	1.8	63

#	Article	IF	CITATIONS
73	Flavor preferences conditioned by intragastric infusions of dilute Polycose solutions. Physiology and Behavior, 1994, 55, 957-962.	2.1	62
74	GPR40 and GPR120 fatty acid sensors are critical for postoral but not oral mediation of fat preferences in the mouse. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R1490-R1497.	1.8	62
75	Food motivation and body weight levels in hypothalamic hyperphagic rats: A dual lipostat model of hunger and appetite Journal of Comparative and Physiological Psychology, 1974, 86, 28-46.	1.8	61
76	Carbohydrate- and protein-conditioned flavor preferences: Effects of nutrient preloads. Physiology and Behavior, 1996, 59, 467-474.	2.1	61
77	Enhanced sucrose and Polycose preference in sweet "sensitive―(C57BL/6J) and "subsensitive―(129P3/J) mice after experience with these saccharides. Physiology and Behavior, 2006, 87, 745-756.	2.1	61
78	Flavor preferences conditioned by intragastric glucose but not fructose or galactose in C57BL/6J mice. Physiology and Behavior, 2012, 106, 457-461.	2.1	60
79	Flavor preferences conditioned by sugars: Rats learn to prefer glucose over fructose. Physiology and Behavior, 1991, 50, 815-824.	2.1	58
80	Dopamine D1 and D2 antagonists reduce the acquisition and expression of flavor-preferences conditioned by fructose in rats. Pharmacology Biochemistry and Behavior, 2003, 75, 55-65.	2.9	57
81	Sucrose motivation in sweet "sensitive―(C57BL/6J) and "subsensitive―(129P3/J) mice measured by progressive ratio licking. Physiology and Behavior, 2006, 87, 734-744.	2.1	57
82	Stevia and Saccharin Preferences in Rats and Mice. Chemical Senses, 2010, 35, 433-443.	2.0	57
83	Food intake and body weight following jejunoileal bypass in obese and lean rats. Brain Research Bulletin, 1980, 5, 69-73.	3.0	55
84	Flavor preferences conditioned by intragastric sugar infusions in rats: maltose is more reinforcing than sucrose. Physiology and Behavior, 1998, 64, 535-541.	2.1	55
85	Hyperreactivity to aversive diets in rats produced by injections of insulin or tolbutamide, but not by food deprivation. Physiology and Behavior, 1979, 23, 557-567.	2.1	54
86	Flavor Preferences Conditioned by Intragastric Polycose in Rats: More Concentrated Polycose Is Not Always More Reinforcing. Physiology and Behavior, 1997, 63, 7-14.	2.1	54
87	Parabrachial nucleus lesions block taste and attenuate flavor preference and aversion conditioning in rats Behavioral Neuroscience, 2001, 115, 920-933.	1.2	54
88	Role of dopamine D1 and D2 receptors in the nucleus accumbens shell on the acquisition and expression of fructose-conditioned flavor–flavor preferences in rats. Behavioural Brain Research, 2008, 190, 59-66.	2.2	54
89	Polysaccharides as taste stimuli: their effect in the nucleus tractus solitarius of the rat. Brain Research, 1991, 555, 1-9.	2.2	52
90	Pharmacology of Flavor Preference Conditioning in Sham-Feeding Rats. Pharmacology Biochemistry and Behavior, 2000, 65, 635-647.	2.9	52

#	Article	IF	CITATIONS
91	Naltrexone does not prevent acquisition or expression of flavor preferences conditioned by fructose in rats. Pharmacology Biochemistry and Behavior, 2004, 78, 239-246.	2.9	52
92	Sweet taste signaling in the gut. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14887-14888.	7.1	52
93	Feeding and drinking pathways between medial and lateral hypothalamus in the rat Journal of Comparative and Physiological Psychology, 1973, 85, 29-51.	1.8	51
94	Pharmacology of Sucrose-Reinforced Place-Preference Conditioning. Pharmacology Biochemistry and Behavior, 2000, 65, 697-704.	2.9	51
95	Flavor preferences conditioned in C57BL/6 mice by intragastric carbohydrate self-infusion. Physiology and Behavior, 2003, 79, 783-788.	2.1	51
96	Reactivity of hyperphagic and normal rats to quinine and electric shock Journal of Comparative and Physiological Psychology, 1971, 74, 157-166.	1.8	50
97	Role of D1 and D2 dopamine receptors in the acquisition and expression of flavor-preference conditioning in sham-feeding rats. Pharmacology Biochemistry and Behavior, 2000, 67, 537-544.	2.9	49
98	Flavor preferences conditioned by intragastric nutrient infusions in food restricted and free-feeding rats. Physiology and Behavior, 2005, 84, 217-231.	2.1	49
99	Neuropharmacology of learned flavor preferences. Pharmacology Biochemistry and Behavior, 2010, 97, 55-62.	2.9	49
100	SGLT1 sugar transporter/sensor is required for post-oral glucose appetition. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R631-R639.	1.8	49
101	Starch preference in rats. Neuroscience and Biobehavioral Reviews, 1987, 11, 253-262.	6.1	48
102	Glucose elicits cephalic-phase insulin release in mice by activating K _{ATP} channels in taste cells. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R597-R610.	1.8	48
103	Dietary preference behavior in rats fed bitter tasting quinine and sucrose octa acetate adulterated diets. Physiology and Behavior, 1980, 25, 157-160.	2.1	47
104	Histochemical identification of a PVN-hindbrain feeding pathway. Physiology and Behavior, 1988, 42, 529-543.	2.1	47
105	Fat and sugar flavor preference and acceptance in C57BL/6J and 129 mice: Experience attenuates strain differences. Physiology and Behavior, 2007, 90, 602-611.	2.1	47
106	Postoral Glucose Sensing, Not Caloric Content, Determines Sugar Reward in C57BL/6J Mice. Chemical Senses, 2015, 40, 245-258.	2.0	47
107	Conditioned flavor preference and aversion: Role of the lateral hypothalamus Behavioral Neuroscience, 2001, 115, 84-93.	1.2	46
108	Dopamine D1â€like receptor antagonism in amygdala impairs the acquisition of glucoseâ€conditioned flavor preference in rats. European Journal of Neuroscience, 2009, 30, 289-298.	2.6	46

#	Article	IF	CITATIONS
109	The role of T1r3 and Trpm5 in carbohydrate-induced obesity in mice. Physiology and Behavior, 2012, 107, 50-58.	2.1	46
110	Ontogeny of polycose and sucrose appetite in neonatal rats. Developmental Psychobiology, 1988, 21, 457-465.	1.6	44
111	Lateral hypothalamic lesions impair flavourâ€nutrient and flavourâ€toxin trace learning in rats. European Journal of Neuroscience, 2002, 16, 2425-2433.	2.6	44
112	Post-oral glucose stimulation of intake and conditioned flavor preference in C57BL/6J mice: A concentration–response study. Physiology and Behavior, 2013, 109, 33-41.	2.1	44
113	High-fat diet preference and overeating mediated by postingestive factors in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 275, R1511-R1522.	1.8	43
114	Acquisition of glucose-conditioned flavor preference requires the activation of dopamine D1-like receptors within the medial prefrontal cortex in rats. Neurobiology of Learning and Memory, 2010, 94, 214-219.	1.9	43
115	Nutritionally based learned flavor preferences in rats , 1990, , 139-156.		43
116	Effects of gustatory deafferentation on polycose and sucrose appetite in the rat. Neuroscience and Biobehavioral Reviews, 1987, 11, 201-209.	6.1	42
117	Influence of saccharide length on polysaccharide appetite in the rat. Neuroscience and Biobehavioral Reviews, 1987, 11, 197-200.	6.1	41
118	Female Rats show a Bimodal Preference Response to the Artificial Sweetener Sucralose. Chemical Senses, 2004, 29, 523-528.	2.0	41
119	Food deprivation-induced activity in dietary obese, dietary lean, and normal-weight rats. Behavioral Biology, 1978, 24, 220-228.	2.2	40
120	Oral, post-oral and genetic interactions in sweet appetite. Physiology and Behavior, 2006, 89, 525-530.	2.1	40
121	The dopaminergic mediation of a sweet reward in normal and VMH hyperphagic rats. Pharmacology Biochemistry and Behavior, 1982, 16, 293-302.	2.9	39
122	Rapid acquisition of conditioned flavor preferences in rats. Physiology and Behavior, 2009, 97, 406-413.	2.1	39
123	Carbohydrate, fat, and protein condition similar flavor preferences in rats using an oral-delay procedure. Physiology and Behavior, 1995, 57, 549-554.	2.1	38
124	Cyphaâ,,¢ [Propionic acid, 2-(4-methoxyphenol) salt] inhibits sweet taste in humans, but not in rats. Physiology and Behavior, 1997, 61, 25-29.	2.1	38
125	Role of amygdala dopamine D1 and D2 receptors in the acquisition and expression of fructose-conditioned flavor preferences in rats. Behavioural Brain Research, 2009, 205, 183-190.	2.2	38
126	Effects of hypothalamic knife cuts on the ingestive responses to glucose and insulin. Physiology and Behavior, 1975, 15, 63-70.	2.1	37

#	Article	IF	CITATIONS
127	Oral versus postingestive origin of polysaccharide appetite in the rat. Neuroscience and Biobehavioral Reviews, 1987, 11, 169-172.	6.1	37
128	Hyperphagia in rats produced by a mixture of fat and sugar. Physiology and Behavior, 1990, 47, 51-55.	2.1	37
129	Food Deprivation Increases the Rat's Preference for a Fatty Flavor Over a Sweet Taste. Chemical Senses, 1996, 21, 169-179.	2.0	37
130	Fructose-conditioned flavor preferences in male and female rats: effects of sweet taste and sugar concentration. Appetite, 2004, 42, 287-297.	3.7	37
131	Impact of T1r3 and Trpm5 on Carbohydrate Preference and Acceptance in C57BL/6 Mice. Chemical Senses, 2013, 38, 421-437.	2.0	37
132	Hypothalamic hyperphagic rats overeat bitter sucrose octa acetate diets but not quinine diets. Physiology and Behavior, 1979, 22, 759-766.	2.1	36
133	Dietary-Induced Overeating. Annals of the New York Academy of Sciences, 1989, 575, 281-291.	3.8	36
134	Deprivation alters rats' flavor preferences for carbohydrates and fats. Physiology and Behavior, 1993, 53, 1091-1099.	2.1	36
135	Learning of food preferences: mechanisms and implications for obesity & metabolic diseases. International Journal of Obesity, 2021, 45, 2156-2168.	3.4	36
136	Influence of diet palatability on the meal taking behavior of hypothalamic hyperphagic and normal rats. Physiology and Behavior, 1976, 16, 355-363.	2.1	35
137	The Role of Gastric and Postgastric Sites in Glucose-Conditioned Flavor Preferences in Rats. Physiology and Behavior, 1997, 61, 351-358.	2.1	35
138	Role of Olfaction in the Conditioned Sucrose Preference of Sweet-Ageusic T1R3 Knockout Mice. Chemical Senses, 2009, 34, 685-694.	2.0	35
139	Strain differences in sucrose- and fructose-conditioned flavor preferences in mice. Physiology and Behavior, 2012, 105, 451-459.	2.1	35
140	Flavor preference conditioning as a function of fat source. Physiology and Behavior, 2005, 85, 448-460.	2.1	34
141	Sucrose-conditioned flavor preferences in sweet ageusic T1r3 and Calhm1 knockout mice. Physiology and Behavior, 2014, 126, 25-29.	2.1	34
142	Influence of diet form on the hyperphagia-promoting effect of polysaccharide in rats. Life Sciences, 1984, 34, 1253-1259.	4.3	33
143	Flavor preference produced by intragastric polycose infusions in rats using a concurrent conditioning procedure. Physiology and Behavior, 1993, 54, 351-355.	2.1	33
144	Naltrexone suppresses the late but not early licking response to a palatable sweet solution: opioid hedonic hypothesis reconsidered. Pharmacology Biochemistry and Behavior, 2002, 74, 163-172.	2.9	32

#	Article	IF	CITATIONS
145	Flavor preferences conditioned by postingestive effects of nutrients in preweanling rats. Physiology and Behavior, 2005, 84, 407-419.	2.1	31
146	Sucrose taste but not Polycose taste conditions flavor preferences in rats. Physiology and Behavior, 2008, 95, 235-244.	2.1	31
147	Dopamine signaling in the medial prefrontal cortex and amygdala is required for the acquisition of fructose-conditioned flavor preferences in rats. Behavioural Brain Research, 2012, 233, 500-507.	2.2	31
148	Fructose- and glucose-conditioned preferences in FVB mice: strain differences in post-oral sugar appetition. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R1448-R1457.	1.8	31
149	Flavor preferences conditioned by intragastric infusion of ethanol in rats. Pharmacology Biochemistry and Behavior, 2001, 68, 327-338.	2.9	30
150	Feeding inhibition and death produced by glucose ingestion in the rat. Physiology and Behavior, 1973, 11, 595-601.	2.1	29
151	The composition of the maintenance diet alters flavor-preference conditioning by intragastric fat infusions in rats. Physiology and Behavior, 1996, 60, 1151-1157.	2.1	29
152	2-Deoxy-D-glucose fails to induce feeding in hamsters fed a preferred diet. Physiology and Behavior, 1980, 24, 641-643.	2.1	27
153	Dietary selection in vagotomized rats. Journal of the Autonomic Nervous System, 1983, 9, 247-258.	1.9	27
154	Sucrose-induced hyperphagia and obesity in rats fed a macronutrient self-selection diet. Physiology and Behavior, 1988, 44, 181-187.	2.1	27
155	Sucrose to polycose preference shifts in rats: The role of taste, osmolality and the fructose moiety. Physiology and Behavior, 1991, 49, 1047-1060.	2.1	27
156	Flavor preferences conditioned by sucrose depend upon training and testing methods. Physiology and Behavior, 2002, 76, 633-644.	2.1	27
157	Rats Display a Robust Bimodal Preference Profile for Sucralose. Chemical Senses, 2011, 36, 733-745.	2.0	27
158	Influence of saccharin on polycose, sucrose, and glucose intake and preference in rats. Neuroscience and Biobehavioral Reviews, 1987, 11, 223-229.	6.1	26
159	Learned preferences for real-fed and sham-fed polycose in rats: Interaction of taste, postingestive reinforcement, and satiety. Physiology and Behavior, 1994, 56, 331-337.	2.1	26
160	Nutrient-conditioned flavor preference and incentive value measured by progressive ratio licking in rats. Physiology and Behavior, 2006, 88, 88-94.	2.1	26
161	Starch-induced overeating and overweight in rats: Influence of starch type and form. Physiology and Behavior, 1988, 42, 409-415.	2.1	25
162	Diabetic Rats Prefer Glucose-paired Flavors over Fructose-paired Flavors. Appetite, 1997, 28, 73-83.	3.7	25

#	Article	IF	CITATIONS
163	Devazepide, a CCKA Antagonist, Attenuates the Satiating but Not the Preference Conditioning Effects of Intestinal Carbohydrate Infusions in Rats. Pharmacology Biochemistry and Behavior, 1998, 59, 451-457.	2.9	25
164	Lateral hypothalamus dopamine D1-like receptors and glucose-conditioned flavor preferences in rats. Neurobiology of Learning and Memory, 2009, 92, 464-467.	1.9	25
165	Operant licking for intragastric sugar infusions: Differential reinforcing actions of glucose, sucrose and fructose in mice. Physiology and Behavior, 2016, 153, 115-124.	2.1	25
166	Does the ventromedial hypothalamus inhibit the lateral hypothalamus?. Physiology and Behavior, 1974, 12, 157-162.	2.1	24
167	Food deprivation enhances the expression but not acquisition of flavor acceptance conditioning in rats. Appetite, 2005, 45, 152-160.	3.7	24
168	Post-oral fat stimulation of intake and conditioned flavor preference in C57BL/6J mice: A concentration-response study. Physiology and Behavior, 2014, 129, 64-72.	2.1	24
169	Taste preferences of squirrel monkeys and bonnet macaques for polycose, maltase and sucrose. Physiology and Behavior, 1988, 43, 685-690.	2.1	23
170	Conditioned food preferences. Bulletin of the Psychonomic Society, 1991, 29, 256-260.	0.2	23
171	The Rat's Preference for Sucrose, Polycose and their Mixtures. Appetite, 1993, 21, 69-80.	3.7	23
172	Multiple knife cuts between the medial and lateral hypothalamus in the rat: A reevaluation of hypothalamic feeding circuitry Journal of Comparative and Physiological Psychology, 1975, 88, 210-217.	1.8	22
173	Genetic variance contributes to dopamine receptor antagonist-induced inhibition of sucrose intake in inbred and outbred mouse strains. Brain Research, 2009, 1257, 40-52.	2.2	22
174	Opioid receptor antagonism in the nucleus accumbens fails to block the expression of sugar-conditioned flavor preferences in rats. Pharmacology Biochemistry and Behavior, 2010, 95, 56-62.	2.9	22
175	Flavor preferences conditioned by post-oral infusion of monosodium glutamate in rats. Physiology and Behavior, 2011, 104, 488-494.	2.1	22
176	Food deprivation-induced activity in normal and hypothalamic obese rats. Behavioral Biology, 1978, 22, 244-255.	2.2	21
177	Obesity by choice revisited: Effects of food availability, flavor variety and nutrient composition on energy intake. Physiology and Behavior, 2007, 92, 468-478.	2.1	21
178	MSG intake and preference in mice are influenced by prior testing experience. Physiology and Behavior, 2012, 107, 207-217.	2.1	21
179	Effects of SOA and saccharin adulteration on polycose preference in rats. Neuroscience and Biobehavioral Reviews, 1987, 11, 163-168.	6.1	20
180	Preference conditioning alters taste responses in the nucleus of the solitary tract of the rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 273, R1230-R1240.	1.8	20

#	Article	IF	CITATIONS
181	Energy density and macronutrient composition determine flavor preference conditioned by intragastric infusions of mixed diets. Physiology and Behavior, 2006, 89, 250-260.	2.1	20
182	Rapid post-oral stimulation of intake and flavor conditioning in rats by glucose but not a non-metabolizable glucose analog. Physiology and Behavior, 2014, 133, 92-98.	2.1	20
183	Insular cortex lesions fail to block flavor and taste preference learning in rats. European Journal of Neuroscience, 2007, 26, 1692-1700.	2.6	19
184	Maltodextrin and Fat Preference Deficits in "Taste-Blind" P2X2/P2X3 Knockout Mice. Chemical Senses, 2014, 39, 507-514.	2.0	19
185	Macronutrient-Conditioned Flavor Preferences. , 1999, , .		19
186	The Rat's Acceptance and Preference for Sucrose, Maltodextrin, and Saccharin Solutions and Mixtures. Physiology and Behavior, 1998, 63, 499-503.	2.1	18
187	Flavor Preferences Conditioned by High-Fat versus High-Carbohydrate Diets Vary as a Function of Session Length. Physiology and Behavior, 1999, 66, 389-395.	2.1	18
188	Ethanol-conditioned flavor preferences compared with sugar- and fat-conditioned preferences in rats. Physiology and Behavior, 2004, 81, 699-713.	2.1	18
189	Unconditioned stimulus devaluation effects in nutrient-conditioned flavor preferences Journal of Experimental Psychology, 2006, 32, 295-306.	1.7	18
190	Food motivation in hypothalamic hyperphagic rats reexamined. Neuroscience and Biobehavioral Reviews, 1978, 2, 339-355.	6.1	17
191	Glucose-conditioned flavor preference learning requires co-activation of NMDA and dopamine D1-like receptors within the amygdala. Neurobiology of Learning and Memory, 2013, 106, 95-101.	1.9	17
192	Flavor Preferences Conditioned by Oral Monosodium Glutamate in Mice. Chemical Senses, 2013, 38, 745-758.	2.0	17
193	Flavor preference conditioning by different sugars in sweet ageusic Trpm5 knockout mice. Physiology and Behavior, 2015, 140, 156-163.	2.1	17
194	Dopamine D1 and opioid receptor antagonist-induced reductions of fructose and saccharin intake in BALB/c and SWR inbred mice. Pharmacology Biochemistry and Behavior, 2015, 131, 13-18.	2.9	17
195	The effects of food deprivation and palatability on the latency to eat of normal and hyperphagic rats. Physiology and Behavior, 1972, 8, 977-979.	2.1	16
196	Genetic variance contributes to dopamine and opioid receptor antagonist-induced inhibition of intralipid (fat) intake in inbred and outbred mouse strains. Brain Research, 2010, 1316, 51-61.	2.2	16
197	Rats' preferences for high fructose corn syrup vs. sucrose and sugar mixtures. Physiology and Behavior, 2011, 102, 548-552.	2.1	16
198	Flavor preferences conditioned by nutritive and non-nutritive sweeteners in mice. Physiology and Behavior, 2017, 173, 188-199.	2.1	16

#	Article	IF	CITATIONS
199	From appetite setpoint to appetition: 50 years of ingestive behavior research. Physiology and Behavior, 2018, 192, 210-217.	2.1	16
200	Greater reductions in fat preferences in CALHM1 than CD36 knockout mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R576-R585.	1.8	16
201	Residual Glucose Taste in T1R3 Knockout but not TRPM5 Knockout Mice. Physiology and Behavior, 2020, 222, 112945.	2.1	16
202	Area postrema lesions impair flavor-toxin aversion learning but not flavor-nutrient preference learning Behavioral Neuroscience, 2002, 116, 256-266.	1.2	15
203	Dried Bonito Dashi: A Preferred Fish Broth Without Postoral Reward Actions in Mice. Chemical Senses, 2014, 39, 159-166.	2.0	15
204	Effect of dopamine D1 and D2 receptor antagonism in the lateral hypothalamus on the expression and acquisition of fructose-conditioned flavor preference in rats. Brain Research, 2014, 1542, 70-78.	2.2	15
205	Chrelin signaling is not essential for sugar or fat conditioned flavor preferences in mice. Physiology and Behavior, 2015, 149, 14-22.	2.1	15
206	Fiber degeneration associated with hyperphagia-inducing knife cuts in the hypothalamus. Experimental Neurology, 1980, 67, 633-645.	4.1	14
207	Double-dissociation of D1 and opioid receptor antagonism effects on the acquisition of sucrose-conditioned flavor preferences in BALB/c and SWR mice. Pharmacology Biochemistry and Behavior, 2012, 103, 26-32.	2.9	14
208	MCH receptor deletion does not impair glucose-conditioned flavor preferences in mice. Physiology and Behavior, 2016, 163, 239-244.	2.1	14
209	Flavor Preferences Conditioned by Dietary Glutamate. Advances in Nutrition, 2016, 7, 845S-852S.	6.4	14
210	Carbohydrate appetite in rats: Taste and postingestive factors. Appetite, 1988, 11, 20-25.	3.7	13
211	Flavor preferences conditioned by intragastric ethanol with limited access training. Pharmacology Biochemistry and Behavior, 2003, 75, 223-233.	2.9	13
212	Flavor Preferences Conditioned by Intragastric Monosodium Glutamate in Mice. Chemical Senses, 2013, 38, 759-767.	2.0	13
213	Intragastric fat self-administration is impaired in GPR40/120 double knockout mice. Physiology and Behavior, 2015, 147, 141-148.	2.1	13
214	BALB/c and SWR inbred mice differ in post-oral fructose appetition as revealed by sugar versus non-nutritive sweetener tests. Physiology and Behavior, 2016, 153, 64-69.	2.1	13
215	Olfaction contributes to the learned avidity for glucose relative to fructose in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R901-R916.	1.8	13
216	THE ROLE OF THE MEDIAL HYPOTHALAMUS IN THE CONTROL OF FOOD INTAKE: AN UPDATE. , 1986, , 27-66.		13

#	Article	IF	CITATIONS
217	Aversive consequences of jejunoileal bypass in the rat: A conditioned taste aversion analysis. Physiology and Behavior, 1985, 34, 709-719.	2.1	12
218	Aversive effects of vagotomy in the rat: A conditioned taste aversion analysis. Physiology and Behavior, 1985, 34, 721-725.	2.1	12
219	Effects of anosmia on polycose appetite in the rat. Neuroscience and Biobehavioral Reviews, 1987, 11, 211-213.	6.1	12
220	Carbohydrate-conditioned odor preferences in rats Behavioral Neuroscience, 1995, 109, 446-454.	1.2	12
221	Flavor quality and ethanol concentration affect ethanol-conditioned flavor preferences. Pharmacology Biochemistry and Behavior, 2002, 74, 229-240.	2.9	12
222	Opioid mediation of starch and sugar preference in the rat. Pharmacology Biochemistry and Behavior, 2010, 96, 507-514.	2.9	12
223	Advantame Sweetener Preference in C57BL/6J Mice and Sprague-Dawley Rats. Chemical Senses, 2015, 40, 181-186.	2.0	12
224	CAST/EiJ and C57BL/6J Mice Differ in Their Oral and Postoral Attraction to Glucose and Fructose. Chemical Senses, 2017, 42, 259-267.	2.0	12
225	Effects of Gastrointestinal Surgery on Ingestive Behavior in Animals. Gastroenterology Clinics of North America, 1987, 16, 461-477.	2.2	12
226	Effects of hypothalamic knife cuts on feeding induced by paraventricular norepinephrine injections. Pharmacology Biochemistry and Behavior, 1982, 16, 101-111.	2.9	11
227	Feeding Response of Rats to Noâ€Fat and Highâ€Fat Cakes. Obesity, 1993, 1, 173-178.	4.0	11
228	Eating rates in normal and hypothalamic hyperphagic rats. Physiology and Behavior, 1994, 55, 489-494.	2.1	11
229	Dopamine D1 and opioid receptor antagonism effects on the acquisition and expression of fat-conditioned flavor preferences in BALB/c and SWR mice. Pharmacology Biochemistry and Behavior, 2013, 110, 127-136.	2.9	11
230	Role of lipolysis in postoral and oral fat preferences in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R434-R441.	1.8	11
231	On the Role of Hypoglycemia in Carbohydrate Appetite. Appetite, 1982, 3, 227-228.	3.7	10
232	Flavour preferences conditioned by protein solutions in post-weaning pigs. Physiology and Behavior, 2012, 107, 309-316.	2.1	10
233	Palatability and foraging cost interact to control caloric intake Journal of Experimental Psychology, 1999, 25, 28-36.	1.7	10
234	Oral and Postoral Determinants of Dietary Fat Appetite. Frontiers in Neuroscience, 2009, , 295-321.	0.0	10

#	Article	IF	CITATIONS
235	Conditioned food preferences and appetite. Appetite, 1991, 17, 71-72.	3.7	9
236	Rats integrate meal cost and postoral changes in caloric density. Physiology and Behavior, 1996, 60, 927-932.	2.1	9
237	Galactose Consumption Induces Conditioned Flavor Avoidance in Rats. Journal of Nutrition, 1999, 129, 1737-1741.	2.9	9
238	Role of NMDA, opioid and dopamine D1 and D2 receptor signaling in the acquisition of a quinine-conditioned flavor avoidance in rats. Physiology and Behavior, 2014, 128, 133-140.	2.1	9
239	Dopamine D1 and opioid receptor antagonists differentially reduce the acquisition and expression of fructose-conditioned flavor preferences in BALB/c and SWR mice. Physiology and Behavior, 2015, 151, 213-220.	2.1	9
240	Flavor change and food deprivation are not critical for post-oral glucose appetition in mice. Physiology and Behavior, 2015, 140, 23-31.	2.1	9
241	Hypothalamic obesity in male rats: Comparison of parasagittal, coronal, and combined knife cuts. Behavioral and Neural Biology, 1982, 34, 201-208.	2.2	8
242	Development changes in sugar and starch taste preferences in young rats. Physiology and Behavior, 1990, 48, 7-12.	2.1	8
243	Ethanol flavor preference conditioned by intragastric carbohydrate in rats. Pharmacology Biochemistry and Behavior, 2002, 74, 41-51.	2.9	8
244	The CS–US delay gradient in flavor preference conditioning with intragastric carbohydrate infusions. Physiology and Behavior, 2012, 105, 168-174.	2.1	8
245	The effects of knife cuts between the medial and lateral hypothalamus on feeding and LH self-stimulation in the rat. Behavioral Biology, 1974, 12, 491-500.	2.2	7
246	Ovariectomy-induced changes in food motivation in the rat. Hormones and Behavior, 1977, 9, 120-129.	2.1	7
247	Influence of diet palatability on the noradrenergic feeding response in the rat. Pharmacology Biochemistry and Behavior, 1981, 15, 15-19.	2.9	7
248	Role of systemic endocannabinoid CB-1 receptor antagonism in the acquisition and expression of fructose-conditioned flavor–flavor preferences in rats. Pharmacology Biochemistry and Behavior, 2008, 90, 318-324.	2.9	7
249	Selective Effects of Naltrexone on Food Pleasantness and Intake. Physiology and Behavior, 1996, 60, 447-453.	2.1	7
250	Polycose and sucrose appetite in rats: Influence of food deprivation and insulin treatment. Appetite, 1988, 11, 201-213.	3.7	6
251	Maltodextrin and sucrose preferences in sweet-sensitive (C57BL/6J) and subsensitive (129P3/J) mice revisited. Physiology and Behavior, 2016, 165, 286-290.	2.1	6
252	NMDA receptor antagonism differentially reduces acquisition and expression of sucrose- and fructose-conditioned flavor preferences in BALB/c and SWR mice. Pharmacology Biochemistry and Behavior, 2016, 148, 76-83.	2.9	6

#	Article	IF	CITATIONS
253	Acquisition and expression of fat-conditioned flavor preferences are differentially affected by NMDA receptor antagonism in BALB/c and SWR mice. European Journal of Pharmacology, 2017, 799, 26-32.	3.5	6
254	Capsaicin-induced visceral deafferentation does not attenuate flavor conditioning by intragastric fat infusions in mice. Physiology and Behavior, 2019, 208, 112586.	2.1	6
255	Conditioned taste aversion in lean and obese rats with ventromedial hypothalamic knife cuts Behavioral Neuroscience, 1983, 97, 110-119.	1.2	5
256	A comparison of the effects of atropine on real-feeding and sham-feeding of sucrose in rats. Pharmacology Biochemistry and Behavior, 1988, 29, 231-238.	2.9	5
257	Commentary: Sugar Metabolism Regulates Flavor Preferences and Portal Glucose Sensing. Frontiers in Integrative Neuroscience, 2019, 13, 4.	2.1	5
258	Differential effects of hypothalamic transections on the wood gnawing behavior of rats. Physiology and Behavior, 1973, 10, 451-454.	2.1	4
259	Effects of presurgical weight reduction on the development of hypothalamic hyperphagia in rats. Behavioral Biology, 1977, 21, 412-417.	2.2	4
260	Correlation and causation in the study of feeding behavior. Behavioral and Brain Sciences, 1981, 4, 590-591.	0.7	4
261	Nutrient-conditioned intake stimulation does not require a distinctive flavor cue in rats. Appetite, 2020, 154, 104793.	3.7	4
262	Profound differences in fat versus carbohydrate preferences in CAST/EiJ and C57BL/6J mice: Role of fat taste. Physiology and Behavior, 2018, 194, 348-355.	2.1	3
263	Area postrema lesions impair flavor-toxin aversion learning but not flavor-nutrient preference learning. Behavioral Neuroscience, 2002, 116, 256-66.	1.2	3
264	Hyperphagia and obesity in the guinea pig produced by hypothalamic knife cuts. Behavioral Biology, 1977, 19, 394-400.	2.2	2
265	Dietary Fat-Induced Overeating. Annals of the New York Academy of Sciences, 1989, 575, 487-489.	3.8	2
266	Conditioned Flavor Preferences: Evaluating Postingestive Reinforcement by Nutrients. Current Protocols in Neuroscience, 1998, 5, Unit 8.6F.	2.6	2
267	Miglitol (BAY m 1099) Treatment of Diabetic Hypothalamicâ€Dietary Obese Rats Improves Islet Response to Glucose. Obesity, 1999, 7, 83-89.	4.0	2
268	Differential fructose and glucose appetition in DBA/2, 129P3 and C57BL/6Â×Â129P3 hybrid mice revealed by sugar versus non-nutritive sweetener tests. Physiology and Behavior, 2021, 241, 113590.	2.1	2
269	Fat preference deficits and experience-induced recovery in global taste-deficient Trpm5 and Calhm1 knockout mice. Physiology and Behavior, 2022, 246, 113695.	2.1	2
270	Water intake regulation in rats after intestinal bypass surgery. Physiology and Behavior, 1981, 27, 779-784.	2.1	1

#	Article	IF	CITATIONS
271	The conditioning of aversions to familiar and preferred flavours: a new aversion therapy model. Drug and Alcohol Review, 1990, 9, 321-324.	2.1	1
272	Bypassing Intestinal Sugar Enhancement of Sweet Appetite. Cell Metabolism, 2016, 23, 3-4.	16.2	1
273	Formation of Flavor Aversions and Preferences. , 2020, , 333-352.		1
274	Inexpensive stereotaxic sighting microscope. Physiology and Behavior, 1975, 14, 235-236.	2.1	0
275	Hypothalamic hyperphagia: Then and now. Appetite, 1992, 19, 304.	3.7	Ο
276	George H.Collier biography. Appetite, 2002, 38, 131-135.	3.7	0