Nils Huse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3966917/publications.pdf Version: 2024-02-01

NUS HUSE

#	Article	IF	CITATIONS
1	Intraband dynamics of mid-infrared HgTe quantum dots. Nanoscale, 2022, 14, 4123-4130.	2.8	6
2	Population Dynamics of Stretching Excitations of p-Azido-phenylalanine Incorporated in Calmodulin–Peptide Complexes. Journal of Physical Chemistry B, 2022, 126, 368-375.	1.2	0
3	Electronic Structure Changes of an Aromatic Amine Photoacid along the Förster Cycle. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
4	R-Group stabilization in methylated formamides observed by resonant inelastic X-ray scattering. Chemical Communications, 2022, 58, 8834-8837.	2.2	2
5	Carrier Injection Observed by Interface-Enhanced Raman Scattering from Topological Insulators on Gold Substrates. ACS Applied Materials & Interfaces, 2022, 14, 32625-32633.	4.0	4
6	Shot noise limited soft x-ray absorption spectroscopy in solution at a SASE-FEL using a transmission grating beam splitter. Structural Dynamics, 2021, 8, 014303.	0.9	7
7	Femtosecond Charge Density Modulations in Photoexcited CuWO ₄ . Journal of Physical Chemistry C, 2021, 125, 7329-7336.	1.5	6
8	X-ray-Based Techniques to Study the Nano–Bio Interface. ACS Nano, 2021, 15, 3754-3807.	7.3	60
9	Following Metal-to-Ligand Charge-Transfer Dynamics with Ligand and Spin Specificity Using Femtosecond Resonant Inelastic X-ray Scattering at the Nitrogen K-Edge. Journal of Physical Chemistry Letters, 2021, 12, 6676-6683.	2.1	12
10	Breaking the Symmetry of Pyrimidine: Solvent Effects and Core-Excited State Dynamics. Journal of Physical Chemistry Letters, 2021, 12, 8637-8643.	2.1	8
11	Femtosecond x-ray absorption spectroscopy of pyrazine at the nitrogen K-edge: on the validity of the Lorentzian limit. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 244003.	0.6	4
12	Nanoscale Confinement of Photo-Injected Electrons at Hybrid Interfaces. Journal of Physical Chemistry Letters, 2021, 12, 11951-11959.	2.1	1
13	Ligand-Field Effects in a Ruthenium(II) Polypyridyl Complex Probed by Femtosecond X-ray Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 12165-12172.	2.1	3
14	Structural Kinetics of MsbA Investigated by Stopped-Flow Time-Resolved Small-Angle X-Ray Scattering. Structure, 2020, 28, 348-354.e3.	1.6	28
15	Deciphering Photoacidity by Following Electronic Charge Distribution Changes along the Photoacid Förster Cycle with Time-Resolved Nitrogen K-Edge X-Ray Absorption Spectroscopy. , 2020, , .		Ο
16	Using Ultrafast X-ray Spectroscopy To Address Questions in Ligand-Field Theory: The Excited State Spin and Structure of [Fe(dcpp) ₂] ²⁺ . Inorganic Chemistry, 2019, 58, 9341-9350.	1.9	29
17	Graphite-like dynamical behaviour of graphite oxide. EPJ Web of Conferences, 2019, 205, 04014.	0.1	0
18	Real-time probing of charge-transfer induced interfacial fields in a dye-semiconductor system using time-resolved XPS. EPJ Web of Conferences, 2019, 205, 05021.	0.1	0

NILS HUSE

#	Article	IF	CITATIONS
19	Decomposing electronic and lattice contributions in optical pump – X-ray probe transient inner-shell absorption spectroscopy of CuO. Faraday Discussions, 2019, 216, 414-433.	1.6	8
20	UV-photochemistry of the biologically relevant thiol group and the disulfide bond: Evolution of early photoproducts from picosecond X-ray absorption spectroscopy at the sulfur K-Edge. EPJ Web of Conferences, 2019, 205, 09006.	0.1	0
21	Crystal structure of a domainâ€swapped photoactivatable sfGFP variant provides evidence for GFP folding pathway. FEBS Journal, 2019, 286, 2329-2340.	2.2	5
22	Synthesis and characterisation of α-carboxynitrobenzyl photocaged <scp>l</scp> -aspartates for applications in time-resolved structural biology. RSC Advances, 2019, 9, 8695-8699.	1.7	4
23	Conformation-specific detection of calmodulin binding using the unnatural amino acid p-azido-phenylalanine (AzF) as an IR-sensor. Structural Dynamics, 2018, 5, 064701.	0.9	10
24	UV-Photochemistry of the Disulfide Bond: Evolution of Early Photoproducts from Picosecond X-ray Absorption Spectroscopy at the Sulfur K-Edge. Journal of the American Chemical Society, 2018, 140, 6554-6561.	6.6	30
25	Transient metal-centered states mediate isomerization of a photochromic ruthenium-sulfoxide complex. Nature Communications, 2018, 9, 1989.	5.8	29
26	Soft X-ray Spectroscopy of the Amine Group: Hydrogen Bond Motifs in Alkylamine/Alkylammonium Acid–Base Pairs. Journal of Physical Chemistry B, 2018, 122, 7737-7746.	1.2	22
27	Light-Induced Radical Formation and Isomerization of an Aromatic Thiol in Solution Followed by Time-Resolved X-ray Absorption Spectroscopy at the Sulfur K-Edge. Journal of the American Chemical Society, 2017, 139, 4797-4804.	6.6	26
28	Sensitivity of core-level spectroscopy to electrostatic environments of nitrile groups: An <i>ab initio</i> study. Structural Dynamics, 2017, 4, 054102.	0.9	6
29	Time-resolved soft X-ray absorption spectroscopy in transmission mode on liquids at MHz repetition rates. Structural Dynamics, 2017, 4, 054902.	0.9	47
30	Electronic and Molecular Structure of the Transient Radical Photocatalyst Mn(CO) ₅ and Its Parent Compound Mn ₂ (CO) ₁₀ . Inorganic Chemistry, 2016, 55, 5895-5903.	1.9	19
31	Tracking reaction dynamics in solution by pump–probe X-ray absorption spectroscopy and X-ray liquidography (solution scattering). Chemical Communications, 2016, 52, 3734-3749.	2.2	35
32	Time-Resolved X-ray Spectroscopy in the Water Window: Elucidating Transient Valence Charge Distributions in an Aqueous Fe(II) Complex. Journal of Physical Chemistry Letters, 2016, 7, 465-470.	2.1	50
33	lf You Can Get a Crystal Structure, Why Bother with Anything Else?. Synchrotron Radiation News, 2015, 28, 10-14.	0.2	4
34	Principles of femtosecond X-ray/optical cross-correlation with X-ray induced transient optical reflectivity in solids. Applied Physics Letters, 2015, 106, .	1.5	20
35	Element-Specific Characterization of Transient Electronic Structure of Solvated Fe(II) Complexes with Time-Resolved Soft X-ray Absorption Spectroscopy. Accounts of Chemical Research, 2015, 48, 2957-2966.	7.6	30
36	Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources. Review of Scientific Instruments, 2014, 85, 093102.	0.6	30

NILS HUSE

#	Article	IF	CITATIONS
37	Atomic-Scale Perspective of Ultrafast Charge Transfer at a Dye–Semiconductor Interface. Journal of Physical Chemistry Letters, 2014, 5, 2753-2759.	2.1	79
38	Ultrafast electron and energy transfer in dye-sensitized iron oxide and oxyhydroxide nanoparticles. Physical Chemistry Chemical Physics, 2013, 15, 17303.	1.3	16
39	Real-Time Manifestation of Strongly Coupled Spin and Charge Order Parameters in Stripe-Ordered <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mi>La</mml:mi>1.75</mml:msub><mml:msub><m Crystals Using Time-Resolved Resonant X-Ray Diffraction Physical Review Letters 2013 110 127404</m </mml:msub></mml:math>	ml:mi>Sr <td>nml<mark>:</mark>mi><mml< td=""></mml<></td>	nml <mark>:</mark> mi> <mml< td=""></mml<>
40	Simulating Ru L ₃ -Edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers. Journal of Physical Chemistry A, 2013, 117, 4444-4454.	1.1	59
41	Elucidating Charge Delocalization in the High-Spin State of aqueous FellSpin-Crossover Compounds via Time-Resolved Spectroscopy in the X-ray Water Window. EPJ Web of Conferences, 2013, 41, 05037.	0.1	О
42	Ligand-field symmetry effects in Fe(ii) polypyridyl compounds probed by transient X-ray absorption spectroscopy. Faraday Discussions, 2012, 157, 463.	1.6	49
43	Phase fluctuations and the absence of topological defects in a photo-excited charge-ordered nickelate. Nature Communications, 2012, 3, 838.	5.8	85
44	Probing the Electronic Structure of a Photoexcited Solar Cell Dye with Transient X-ray Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2012, 3, 1695-1700.	2.1	63
45	Femtosecond Soft X-ray Spectroscopy of Solvated Transition-Metal Complexes: Deciphering the Interplay of Electronic and Structural Dynamics. Journal of Physical Chemistry Letters, 2011, 2, 880-884.	2.1	169
46	Photo-Induced Spin-State Conversion in Solvated Transition Metal Complexes Probed via Time-Resolved Soft X-ray Spectroscopy. Journal of the American Chemical Society, 2010, 132, 6809-6816.	6.6	135
47	Ultrafast Spin-State Conversion in Solvated Transition Metal Complexes Probed with Femtosecond Soft X-ray Spectroscopy. , 2010, , .		Ο
48	Atomic resolution mapping of the excited-state electronic structure of < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:mrow> < mml:msub> < mml:mrow> < mml:mtext> Cu < / mml:mtext> < / mml:mrow> < mml:mr time-resolved x-ray absorption spectroscopy. Physical Review B, 2009, 80, .	ı>2 <td>nn></td>	nn>
49	Probing reaction dynamics of transition-metal complexes <i>in solution</i> via time-resolved X-ray spectroscopy. Journal of Physics: Conference Series, 2009, 148, 012043.	0.3	10
50	Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy. Journal of Chemical Physics, 2009, 131, 234505.	1.2	46
51	Probing the hydrogen-bond network of water via time-resolved soft X-ray spectroscopy. Physical Chemistry Chemical Physics, 2009, 11, 3951.	1.3	71
52	Temperature dependence of the two-dimensional infrared spectrum of liquid H ₂ 0. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 437-442.	3.3	242
53	Ultrafast Structural Dynamics of Water Induced by Dissipation of Vibrational Energy. Journal of Physical Chemistry A, 2007, 111, 743-746.	1.1	195
54	Ultrafast vibrational dynamics and anharmonic couplings of hydrogen-bonded dimers in solution. Chemical Physics, 2007, 341, 175-188.	0.9	41

Nils Huse

#	Article	IF	CITATIONS
55	Vibrational couplings and ultrafast relaxation of the O–H bending mode in liquid H2O. Chemical Physics Letters, 2006, 424, 66-70.	1.2	122
56	Ultrafast vibrational relaxation of O–H bending and librational excitations in liquid H2O. Chemical Physics Letters, 2005, 404, 389-393.	1.2	118
57	Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature, 2005, 434, 199-202.	13.7	691
58	Anharmonic Couplings Underlying the Ultrafast Vibrational Dynamics of Hydrogen Bonds in Liquids. Physical Review Letters, 2005, 95, 147402.	2.9	75
59	Coherent low-frequency motions of hydrogen bonded acetic acid dimers in the liquid phase. Journal of Chemical Physics, 2004, 121, 902-913.	1.2	138
60	Ultrafast vibrational dynamics of hydrogen-bonded dimers in solution. , 2004, , 157-164.		1
61	Creating λ /3 focal holes with a Mach–Zehnder interferometer. Applied Physics B: Lasers and Optics, 2003, 77, 11-17.	1.1	30
62	Ultrafast relaxation and anharmonic coupling of O–H stretching and bending excitations in cyclic acetic acid dimers. Chemical Physics Letters, 2003, 382, 19-25.	1.2	40
63	Ultrafast coherent nuclear motions of hydrogen bonded carboxylic acid dimers. Chemical Physics Letters, 2003, 369, 591-596.	1.2	54
64	Coherent vibrational dynamics of intermolecular hydrogen bonds in acetic acid dimers studied by ultrafast mid-infrared spectroscopy. Journal of Physics Condensed Matter, 2003, 15, S129-S136.	0.7	25
65	Vibrational Multilevel Quantum Coherence due to Anharmonic Couplings in Intermolecular Hydrogen Bonds. Physical Review Letters, 2003, 91, 197401.	2.9	40
66	Z-polarized confocal microscopy. Journal of Biomedical Optics, 2001, 6, 273.	1.4	32
67	Z-polarized confocal microscopy. Journal of Biomedical Optics, 2001, 6, 480.	1.4	51
68	Electronic Structure Changes of an Aromatic Amine Photoacid along the Förster Cycle. Angewandte Chemie, 0, , .	1.6	0