France-Isabelle Auzanneau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3966663/publications.pdf

Version: 2024-02-01

516710 580821 57 825 16 citations h-index papers

g-index 60 60 60 608 docs citations times ranked citing authors all docs

25

#	Article	IF	CITATIONS
1	Anti-Lea monoclonal antibody SPM 522 recognizes an extended Lea epitope. Bioorganic and Medicinal Chemistry, 2022, 56, 116628.	3.0	1
2	ROESY and $\langle sup > 13 \langle sup > C \rangle$ NMR to distinguish between $\langle scp > d \langle scp > -and \langle scp > l \langle scp > -rhamnose in the α-\langle scp > d \langle scp > -and \langle scp > l \rangle. (1 → 4)-l^2-Rha\langle scp > l > -and \langle scp > l \rangle repeating motif. Organic and Biomolecular Chemistry, 2022, 20, 2964-2980.$	2.8	4
3	Supramolecular Fractal Growth of Self-Assembled Fibrillar Networks. Gels, 2021, 7, 46.	4. 5	5
4	Recognition of Dimeric Lewis X by Anti-Dimeric Lex Antibody SH2. Vaccines, 2020, 8, 538.	4.4	3
5	Hansen Solubility Parameters Clarify the Role of the Primary and Secondary Hydroxyl Groups on the Remarkable Self-Assembly of 1:3,2:4-Dibenzylidene Sorbitol. Journal of Physical Chemistry C, 2020, 124, 26455-26466.	3.1	6
6	Synthesis of LacNAcLe ^x ―and DimLe ^x â€BSA Conjugates and Binding to Antiâ€Polymeric Le ^x mAbs. European Journal of Organic Chemistry, 2019, 2019, 6631-6645.	2.4	4
7	Recognition of Lewis X by Anti-LexMonoclonal Antibody 1G5F6. Journal of Immunology, 2019, 203, 3037-3044.	0.8	3
8	Convergent synthesis of tetra- and penta-saccharide fragments of dimeric Lewis X. Carbohydrate Research, 2019, 482, 107730.	2.3	6
9	Synthesis and electrochemical characterization of 4-thio pseudo-glycolipids as candidate tethers for lipid bilayer models. Electrochimica Acta, 2019, 298, 150-162.	5.2	5
10	Molecular Nuances Governing the Self-Assembly of 1,3:2,4-Dibenzylidene- <scp>d</scp> -sorbitol. Langmuir, 2017, 33, 10907-10916.	3 . 5	18
11	Orthoesters formation leading to mismatched Helferich glycosylations at O-3 of N-trichloroacetylated glucosamine residues. Carbohydrate Research, 2016, 425, 10-21.	2.3	8
12	An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products. Frontiers in Microbiology, 2015, 6, 1157.	3 . 5	54
13	Synthesis of Tumor-Associated Le ^a Le ^x Hexasaccharides: Instability of a Thiol-Containing Oligosaccharide in Mass Spectrometry and Hypermetalation Detected by ESI FAIMS. Journal of Organic Chemistry, 2015, 80, 8073-8083.	3.2	4
14	Aggregation of a Tetrasaccharide Acceptor Observed by NMR: Synthesis of Pentasaccharide Fragments of the Le ^a Le ^x Tumor-Associated Hexasaccharide Antigen. Journal of Organic Chemistry, 2015, 80, 5004-5013.	3.2	12
15	Evidence for Two Populated Conformations for the Dimeric LeX and LeALeX Tumor-Associated Carbohydrate Antigens. Journal of Medicinal Chemistry, 2014, 57, 817-827.	6.4	6
16	Attempts to prepare tethered bilayer lipid membranes using synthetic thioglycolipid anchors: synthesis of $6ae^3$ -thiotrisaccharide glycolipid analogues and applications. Carbohydrate Research, 2014, 390, 50-58.	2.3	3
17	Understanding the Recognition of Lewis X by Anti-LexMonoclonal Antibodies. Journal of Medicinal Chemistry, 2013, 56, 8183-8190.	6.4	8
18	Synthesis and immunological activity of an oligosaccharide-conjugate as a vaccine candidate against Group A Streptococcus. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6038-6042.	2.2	17

#	Article	IF	CITATIONS
19	Challenging Deprotection Steps During the Synthesis of Tetra- and Pentasaccharide Fragments of the Le ^a Le ^x Tumor-Associated Hexasaccharide Antigen. Journal of Organic Chemistry, 2012, 77, 8864-8878.	3.2	30
20	Matched and mismatched acceptor/donor pairs in the glycosylation of a trisaccharide diol free at O-3 of two N-acylated glucosamine residues. Carbohydrate Research, 2012, 357, 132-138.	2.3	15
21	Stochastic searches and NMR experiments on four Lewis A analogues: NMR experiments support some flexibility around the fucosidic bond. Bioorganic and Medicinal Chemistry, 2012, 20, 5085-5093.	3.0	4
22	Synthesis of 4―manipulated Lewis X trisaccharide analogues. Beilstein Journal of Organic Chemistry, 2012, 8, 1134-1143.	2.2	7
23	Conformational Dynamics of a Central Trisaccharide Fragment of the Le ^a Le ^x Tumor Associated Antigen Studied by NMR Spectroscopy and Molecular Dynamics Simulations. European Journal of Organic Chemistry, 2012, 2012, 4705-4715.	2.4	14
24	Convergent Preparation of DimLe ^x Hexasaccharide Analogues. European Journal of Organic Chemistry, 2011, 2011, 6864-6876.	2.4	16
25	Synthesis of a BSA-Lex glycoconjugate and recognition of Lex analogues by the anti-Lex monoclonal antibody SH1: The identification of a non-cross reactive analogue. Bioorganic and Medicinal Chemistry, 2010, 18, 7174-7185.	3.0	18
26	Synthesis of 6-thio pseudo glycolipids and their orientation on a gold slide studied by IRRAS. Carbohydrate Research, 2010, 345, 2723-2730.	2.3	7
27	Synthesis of LeaLex oligosaccharide fragments and efficient one-step deprotection. Carbohydrate Research, 2010, 345, 1216-1221.	2.3	17
28	Convergent syntheses of Le ^X analogues. Beilstein Journal of Organic Chemistry, 2010, 6, 17.	2.2	14
29	The flexibility of the LeaLex Tumor Associated Antigen central fragment studied by systematic and stochastic searches as well as dynamic simulations. Bioorganic and Medicinal Chemistry, 2009, 17, 1514-1526.	3.0	13
30	How the Substituent at O-3 of $\langle i \rangle N \langle i \rangle$ -Acetylglucosamine Impacts Glycosylation at O-4: A Comparative Study. Journal of Organic Chemistry, 2009, 74, 8321-8331.	3.2	16
31	Synthesis of Lewis X and three Lewis X trisaccharide analogues in which glucose and rhamnose replace N-acetylglucosamine and fucose, respectively. Carbohydrate Research, 2008, 343, 1653-1664.	2.3	12
32	Application and limitations of the methyl imidate protection strategy of N-acetylglucosamine for glycosylations at O-4: synthesis of Lewis A and Lewis X trisaccharide analogues. Carbohydrate Research, 2008, 343, 2914-2923.	2.3	23
33	Convenient Temporary Methyl Imidate Protection of N-Acetylglucosamine and Glycosylation at O-4. Journal of Organic Chemistry, 2008, 73, 7574-7579.	3.2	19
34	Selective Protection of 2-Azido-lactose and in Situ Ferrier Rearrangement during Glycosylation:Â Synthesis of a Dimeric Lewis X Fragment. Journal of Organic Chemistry, 2007, 72, 3585-3588.	3.2	9
35	Chemoenzymatic synthesis of thio-nod factor intermediates — Enzymatic transfer of glucosamine on thiochitobiose derivatives. Canadian Journal of Chemistry, 2006, 84, 587-596.	1.1	4
36	Conformational analyses of mycothiol, a critical intracellular glycothiol in Mycobacteria. Carbohydrate Research, 2006, 341, 1164-1173.	2.3	9

#	Article	IF	CITATIONS
37	Synthesis of Lewis A trisaccharide analogues in which d-glucose and l-rhamnose replace d-galactose and l-fucose, respectively. Carbohydrate Research, 2006, 341, 2426-2433.	2.3	12
38	Unusual conformational behavior of trisaccharides containing N-acetylglucosamine. Carbohydrate Research, 2005, 340, 2826-2832.	2.3	11
39	Doubly Branched Hexasaccharide Epitope on the Cell Wall Polysaccharide of Group A Streptococci Recognized by Human and Rabbit Antisera. Infection and Immunity, 2005, 73, 6383-6389.	2.2	23
40	The Amide Group inN-Acetylglucosamine Glycosyl Acceptors Affects Glycosylation Outcome. Journal of Organic Chemistry, 2005, 70, 6265-6273.	3.2	52
41	Synthesis of Lewis X trisaccharide analogues in which glucose and rhamnose replace N-acetylglucosamine and fucose, respectively. Carbohydrate Research, 2003, 338, 1045-1054.	2.3	12
42	Synthesis of S-linked thiooligosaccharide analogues of Nod factors: synthesis of new protected thiodisaccharide and thiotrisaccharide intermediates. Carbohydrate Research, 2003, 338, 1369-1379.	2.3	8
43	Glycosylation ofN-Acetylglucosamine:  Imidate Formation and Unexpected Conformation. Organic Letters, 2003, 5, 2607-2610.	4.6	48
44	Stochastic conformational search on the Lewis X (Lex) trisaccharide and three Lexanalogues. Canadian Journal of Chemistry, 2002, 80, 1088-1095.	1.1	5
45	Bivalency and epitope specificity of a high-affinity IgG3 monoclonal antibody to the Streptococcus Group A carbohydrate antigen. Molecular modeling of a Fv fragment. Carbohydrate Research, 2000, 324, 17-29.	2.3	27
46	Synthesis and NMR analysis of 13C-labeled oligosaccharides corresponding to the major glycolipid from Mycobacterium leprae. Carbohydrate Research, 1998, 306, 493-503.	2.3	6
47	Synthesis and characterization of polyethylene glycol polyacrylamide copolymer (PEGA) resins containing carbohydrate ligands. Evaluation as supports for affinity chromatography. Canadian Journal of Chemistry, 1998, 76, 1109-1118.	1.1	14
48	Synthesis of S-Linked Thiooligosaccharide Analogues of Nodulation Factors. 2.1Synthesis of an Intermediate Thiotrisaccharide. Journal of Organic Chemistry, 1998, 63, 6460-6465.	3.2	7
49	Preparation of antigens and immunoadsorbents corresponding to the Streptococcus group a cell-wall polysaccharide. Bioorganic and Medicinal Chemistry, 1996, 4, 2003-2010.	3.0	32
50	Synthesis of chlorodeoxy trisaccharides related to the Shigella flexneri Y polysaccharide. Carbohydrate Research, 1993, 247, 195-209.	2.3	12
51	The synthesis of chemically modified disaccharide derivatives of the Shigella flexneri Y polysaccharide antigen. Carbohydrate Research, 1993, 240, 161-181.	2.3	11
52	Application of thioglycoside chemistry to the synthesis of trisaccharides and deoxy-trisaccharides related to the Shigella flexneri Y polysaccharide. Canadian Journal of Chemistry, 1993, 71, 534-548.	1.1	20
53	Synthesis of allyl 6-O-(3-deoxy- \hat{l}_{\pm} - and - \hat{l}_{\pm} -d-manno-oct-2-ulopyranosylonic acid)-(1 \hat{a}_{\pm}) Tj ETQq1 1 0.784314 rgB the \hat{l}_{\pm} anomer with acrylamide. Carbohydrate Research, 1992, 228, 37-45.	「/Overlock 2.3	₹ 10 Tf 50 1 <mark>0</mark> 7 5
54	Incidence and avoidance of stereospecific 1,2-ethylthio group migration during the synthesis of ethyl 1-thio-α-l-rhamnopyranoside 2,3-orthoester. Carbohydrate Research, 1991, 212, 13-24.	2.3	55

#	Article	IF	CITATIONS
55	Specific binding of lipopolysaccharides to mouse macrophagesâ€"II. Involvement of distinct lipid a substructures. Molecular Immunology, 1990, 27, 763-770.	2.2	30
56	Synthesis of 1,5-lactones of 3-deoxy-d-manno-2-octulopyranosonic acid (KDO). Carbohydrate Research, 1988, 179, 125-136.	2.3	14
57	Formation of 1,5-lactones from 3-deoxy-d-manno-2-octulosonic acid derivatives Tetrahedron Letters, 1987, 28, 1393-1396.	1.4	6