
Pere Miro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3966578/publications.pdf Version: 2024-02-01

DEDE MIDO

#	Article	IF	CITATIONS
1	An atlas of two-dimensional materials. Chemical Society Reviews, 2014, 43, 6537-6554.	18.7	1,159
2	Two Dimensional Materials Beyond MoS ₂ : Nobleâ€Transitionâ€Metal Dichalcogenides. Angewandte Chemie - International Edition, 2014, 53, 3015-3018.	7.2	215
3	Water Oxidation at a Tetraruthenate Core Stabilized by Polyoxometalate Ligands: Experimental and Computational Evidence To Trace the Competent Intermediates. Journal of the American Chemical Society, 2009, 131, 16051-16053.	6.6	195
4	Colloidal Synthesis of Single-Layer MSe ₂ (M = Mo, W) Nanosheets via Anisotropic Solution-Phase Growth Approach. Journal of the American Chemical Society, 2015, 137, 7266-7269.	6.6	147
5	Tandem intercalation strategy for single-layer nanosheets as an effective alternative to conventional exfoliation processes. Nature Communications, 2015, 6, 5763.	5.8	137
6	On the Nature of Actinide– and Lanthanide–Metal Bonds in Heterobimetallic Compounds. Chemistry - A European Journal, 2011, 17, 8424-8433.	1.7	112
7	Flexible Pores of a Metal Oxide-Based Capsule Permit Entry of Comparatively Larger Organic Guests. Journal of the American Chemical Society, 2009, 131, 6380-6382.	6.6	102
8	On the Origin of the Cation Templated Self-Assembly of Uranyl-Peroxide Nanoclusters. Journal of the American Chemical Society, 2010, 132, 17787-17794.	6.6	102
9	Spontaneous Ripple Formation in MoS ₂ Monolayers: Electronic Structure and Transport Effects. Advanced Materials, 2013, 25, 5473-5475.	11.1	97
10	Keggin Polyoxoanions in Aqueous Solution: Ion Pairing and Its Effect on Dynamic Properties by Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2008, 112, 8591-8599.	1.2	87
11	A Singleâ€Material Logical Junction Based on 2D Crystal PdS ₂ . Advanced Materials, 2016, 28, 853-856.	11.1	85
12	Gated and Differently Functionalized (New) Porous Capsules Direct Encapsulates' Structures: Higher and Lower Density Water. Chemistry - A European Journal, 2009, 15, 1844-1852.	1.7	74
13	Current trends in the computational modelling of polyoxometalates. Theoretical Chemistry Accounts, 2011, 128, 393-404.	0.5	69
14	Electronic Structure of Oxidized Complexes Derived fromcis-[Rull(bpy)2(H2O)2]2+and Its Photoisomerization Mechanism. Inorganic Chemistry, 2011, 50, 11134-11142.	1.9	64
15	Selectivity in Ring-Opening Metathesis Polymerization of <i>Z</i> -Cyclooctenes Catalyzed by a Second-generation Grubbs Catalyst. ACS Catalysis, 2012, 2, 2547-2556.	5.5	55
16	Water clusters to nanodrops: a tight-binding density functional study. Physical Chemistry Chemical Physics, 2013, 15, 1837-1843.	1.3	40
17	A Journey inside the U ₂₈ Nanocapsule. Chemistry - A European Journal, 2012, 18, 8340-8346.	1.7	39
18	Electronic structure and bonding of lanthanoid(iii) carbonates. Physical Chemistry Chemical Physics, 2012, 14, 14822.	1.3	38

Pere Miro

#	Article	IF	CITATIONS
19	Uranyl-Peroxide Nanocapsules: Electronic Structure and Cation Complexation in [(UO ₂) ₂₀ (î¼-O ₂) ₃₀] ^{20–} . Inorganic Chemistry, 2012, 51, 3840-3845.	1.9	37
20	Experimental and Computational Study of a New Wheel-Shaped {[W ₅ O ₂₁] ₃ [(U ^{VI} O ₂) ₂ (î¼-O <sub Polyoxometalate. Inorganic Chemistry, 2012, 51, 8784-8790.</sub 	>21<9sub>)]<385ub>3
21	Polyoxometalates adsorbed on metallic surfaces: immediate reduction of [SiW12O40]4â^' on Ag(100). Chemical Science, 2012, 3, 2020.	3.7	32
22	Selfâ€Assembly of Uranyl–Peroxide Nanocapsules in Basic Peroxidic Environments. Chemistry - A European Journal, 2016, 22, 8571-8578.	1.7	32
23	Dynamics of Encapsulated Water inside Mo ₁₃₂ Cavities. Journal of Physical Chemistry B, 2011, 115, 5980-5992.	1.2	28
24	Effect of Axially Projected Oligothiophene Pendants and Nitro-Functionalized Diimine Ligands on the Lowest Excited State in Cationic Ir(III) bis-Cyclometalates. Inorganic Chemistry, 2012, 51, 5082-5094.	1.9	27
25	Towards a computational treatment of polyoxometalates in solution using QM methods and explicit solvent molecules. Canadian Journal of Chemistry, 2009, 87, 1296-1301.	0.6	26
26	Supramolecular Chemistry on a Cluster Surface: Fixation/Complexation of Potassium and Ammonium Ions with Crownâ€Etherâ€Like Rings. Angewandte Chemie - International Edition, 2009, 48, 5934-5937.	7.2	25
27	Carbon dioxide reduction by mononuclear ruthenium polypyridyl complexes. Physical Chemistry Chemical Physics, 2011, 13, 19480.	1.3	23
28	Water oxidation catalysis with ligand substituted Ru–bpp type complexes. Catalysis Science and Technology, 2016, 6, 5088-5101.	2.1	23
29	Uranyl–Peroxide Nanocapsules in Aqueous Solution: Force Field Development and First Applications. Journal of Physical Chemistry C, 2014, 118, 24730-24740.	1.5	22
30	Synthesis and Characterization of the First 2 D Neptunyl Structure Stabilized by Sideâ€on Cation–Cation Interactions. Chemistry - A European Journal, 2013, 19, 2937-2941.	1.7	21
31	Volatilities of Actinide and Lanthanide <i>N</i> , <i>N</i> -Dimethylaminodiboranate Chemical Vapor Deposition Precursors: A DFT Study. Journal of Physical Chemistry C, 2012, 116, 23194-23200.	1.5	19
32	Understanding Electronic Ligand Perturbation over Successive Metalâ€Based Redox Potentials in Mononuclear Ruthenium–Aqua Complexes. ChemPlusChem, 2013, 78, 235-243.	1.3	17
33	Actinide arene-metalates: ion pairing effects on the electronic structure of unsupported uranium–arenide sandwich complexes. Chemical Science, 2021, 12, 13360-13372.	3.7	13
34	On the electronic structure of giant polyoxometalates: Mo132vs. W72Mo60. Dalton Transactions, 2012, 41, 9984.	1.6	12
35	Carbon Dioxide Reduction Catalyzed by Dinuclear Ruthenium Polypyridyl Complexes. ChemCatChem, 2013, 5, 3897-3903.	1.8	11
36	Oxygenation by Ruthenium Monosubstituted Polyoxotungstates in Aqueous Solution: Experimental and Computational Dissection of a Ru(III)–Ru(V) Catalytic Cycle. Chemistry - A European Journal, 2014, 20, 10932-10943.	1.7	11

3

Pere Miro

#	Article	IF	CITATIONS
37	Encapsulated Water Inside Mo ₁₃₂ Capsules: The Role of Long-Range Correlations of about 1 nm. Journal of Physical Chemistry C, 2014, 118, 5545-5555.	1.5	11
38	Hexagonal Transitionâ€Metal Chalcogenide Nanoflakes with Pronounced Lateral Quantum Confinement. Angewandte Chemie - International Edition, 2014, 53, 12624-12628.	7.2	9
39	Tuning the electronic structure of graphene through alkali metal and halogen atom intercalation. Solid State Communications, 2018, 272, 22-27.	0.9	9
40	O ₂ Activation with a Sterically Encumbered, Oxygen-Deficient Polyoxovanadate-Alkoxide Cluster. Inorganic Chemistry, 2021, 60, 13833-13843.	1.9	8
41	Noble-Metal Chalcogenide Nanotubes. Inorganics, 2014, 2, 556-564.	1.2	7
42	Suzuki coupling catalyzed by chloro({2-[mesityl(quinolin-8-yl-κN)boryl]-3,5-dimethylphenyl}methyl-κC)palladium(II). Tetrahedron, 2019, 75, 2365-2370.	1.0	7
43	Plausible Emergence and Self Assembly of a Primitive Phospholipid from Reduced Phosphorus on the Primordial Earth. Origins of Life and Evolution of Biospheres, 2021, 51, 185-213.	0.8	6
44	Application of Symmetry Functions to Large Chemical Spaces Using a Convolutional Neural Network. Journal of Chemical Information and Modeling, 2020, 60, 1928-1935.	2.5	5
45	Electronic structure and surface properties of the mixed-valence doughnut shaped polyoxomolybdate nanocapsule Mo57V6. Inorganica Chimica Acta, 2010, 363, 4368-4373.	1.2	4
46	Transition Metal Monolayers: Spontaneous Ripple Formation in MoS2Monolayers: Electronic Structure and Transport Effects (Adv. Mater. 38/2013). Advanced Materials, 2013, 25, 5366-5366.	11.1	3
47	Physicochemical implications of surface alkylation of high-valent, Lindqvist-type polyoxovanadate-alkoxide clusters. Nanoscale, 2021, 13, 6162-6173.	2.8	3
48	Prediction of optoelectronic properties of Cu ₂ O using neural network potential. Physical Chemistry Chemical Physics, 2020, 22, 14910-14917.	1.3	2
49	Computational Insights into the Nucleation of Mixed-Valent Polyoxovanadate Alkoxide Clusters. Inorganic Chemistry, 2021, 60, 7262-7268.	1.9	1
50	Computational Insights into Iron Heterometal Installation in Polyoxovanadate–Alkoxide Clusters. Inorganic Chemistry, 2023, 62, 1797-1803.	1.9	1
51	Computational investigation of KICl 2 iodination of thiophene and its electronâ€poor derivatives. Journal of Physical Organic Chemistry, 2021, 34, e4190.	0.9	0
52	Encapsulated Water Molecules in Polyoxometalates: Insights from Molecular Dynamics. NATO Science for Peace and Security Series B: Physics and Biophysics, 2012, , 119-132.	0.2	0