José Lamartine Soares Sobrinho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3966060/publications.pdf

Version: 2024-02-01

72 papers 1,272 citations

361045 20 h-index 32 g-index

72 all docs

72 docs citations 72 times ranked 1762 citing authors

#	Article	IF	CITATIONS
1	New Perspectives in Drug Delivery Systems for the Treatment of Tuberculosis. Current Medicinal Chemistry, 2022, 29, 1936-1958.	1.2	5
2	Development of the stability-indicating method, structural elucidation of new photodegradation products from terconazole by LC-MS TOF, and in vitro toxicity. Journal of Pharmaceutical and Biomedical Analysis, 2022, 216, 114794.	1.4	2
3	Microwave-initiated rapid synthesis of phthalated cashew gum for drug delivery systems. Carbohydrate Polymers, 2021, 254, 117226.	5.1	30
4	Influence of Nonmodified Layered Double Hydroxide (LDH) Metal Constituents in PMMA/LDH Nanocomposites. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 836-850.	1.9	4
5	Characterization, <i>in vitro</i> dissolution, and pharmacokinetics of different batches of efavirenz raw materials. Drug Development and Industrial Pharmacy, 2021, 47, 725-734.	0.9	4
6	The Potential Role of Polyelectrolyte Complex Nanoparticles Based on Cashew Gum, Tripolyphosphate and Chitosan for the Loading of Insulin. International Journal of Diabetology, 2021, 2, 107-116.	0.9	6
7	Why do few drug delivery systems to combat neglected tropical diseases reach the market? An analysis from the technology's stages. Expert Opinion on Therapeutic Patents, 2021, , 1-26.	2.4	2
8	Acetylated cashew gum and fucan for incorporation of lycopene rich extract from red guava (Psidium) Tj ETQq0 Biological Macromolecules, 2021, 191, 1026-1037.	0 0 rgBT /0 3.6	Overlock 10 Tr
9	Eco-friendly synthesis of phthalate angico gum towards nanoparticles engineering using Quality by Design (QbD) approach. International Journal of Biological Macromolecules, 2021, 190, 801-809.	3.6	10
10	Synthesis of Eudragit \hat{A}^{\otimes} L100-coated chitosan-based nanoparticles for oral enoxaparin delivery. International Journal of Biological Macromolecules, 2021, 193, 450-456.	3.6	10
11	Adsorption of tamoxifen on montmorillonite surface. Microporous and Mesoporous Materials, 2020, 297, 110012.	2.2	17
12	Enhanced Dissolution Efficiency of Tamoxifen Combined with Methacrylate Copolymers in Amorphous Solid Dispersions. Crystals, 2020, 10, 1046.	1.0	0
13	Drug Delivery Systems on Leprosy Therapy: Moving Towards Eradication?. Pharmaceutics, 2020, 12, 1202.	2.0	9
14	One-pot synthesis of the organomodified layered double hydroxides - glibenclamide biocompatible nanoparticles. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111055.	2.5	18
15	The Perspectives of Patients and Health Professionals Regarding the Tuberculosis Control Programme in Recife, Brazil: A Contribution to Evaluation. Pharmacy (Basel, Switzerland), 2019, 7, 70.	0.6	1
16	Influence of cyclodextrin on posaconazole stability, release and activity: Improve the utility of the drug. Journal of Drug Delivery Science and Technology, 2019, 53, 101153.	1.4	19
17	Hybrid systems of glibenclamide and layered double hydroxides for solubility enhancement for the treatment of diabetes mellitus II. Applied Clay Science, 2019, 181, 105218.	2.6	14
18	Tamoxifen/montmorillonite system – Effect of the experimental conditions. Applied Clay Science, 2019, 180, 105142.	2.6	16

#	Article	IF	Citations
19	Stability study and oxidative degradation kinetics of posaconazole. Microchemical Journal, 2019, 151, 104181.	2.3	7
20	Strategies to improve glibenclamide dissolution: A review using database tomography. Journal of Drug Delivery Science and Technology, 2019, 54, 101242.	1.4	2
21	Intercalation of olanzapine into CaAl and NiAl Layered Double Hydroxides for dissolution rate improvement: Synthesis, characterization and in vitro toxicity. Journal of Drug Delivery Science and Technology, 2019, 52, 986-996.	1.4	9
22	In-line monitoring of layered double hydroxide synthesis and insights on formation mechanism and kinetics. Applied Clay Science, 2019, 179, 105130.	2.6	7
23	Systematic evaluation of the impact of solid-state polymorphism on the bioavailability of thalidomide. European Journal of Pharmaceutical Sciences, 2019, 136, 104937.	1.9	6
24	Combining amorphous solid dispersions for improved kinetic solubility of posaconazole simultaneously released from soluble PVP/VA64 and an insoluble ammonio methacrylate copolymer. European Journal of Pharmaceutical Sciences, 2019, 133, 79-85.	1.9	27
25	Solvent-free production of phthalated cashew gum for green synthesis of antimicrobial silver nanoparticles. Carbohydrate Polymers, 2019, 213, 176-183.	5.1	52
26	Evaluation of chemometric approaches for polymorphs quantification in tablets using near-infrared hyperspectral images. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 134, 20-28.	2.0	17
27	Solvent-free synthesis of acetylated cashew gum for oral delivery system of insulin. Carbohydrate Polymers, 2019, 207, 601-608.	5.1	34
28	Simultaneous Quantification of Benznidazole and Posaconazole by HPLC-DAD Using QbD Approach. Journal of Chromatographic Science, 2019, 57, 156-162.	0.7	4
29	Nanostructured polymeric system based of cashew gum for oral admnistration of insulin. Revista Materia, 2019, 24, .	0.1	5
30	Consensual improvement actions for the Tuberculosis Control Programme in Pernambuco state, Brazil: an e-Delphi study. AIMS Public Health, 2019, 6, 229-241.	1.1	1
31	Enhanced delivery of fixed-dose combination of synergistic antichagasic agents posaconazole-benznidazole based on amorphous solid dispersions. European Journal of Pharmaceutical Sciences, 2018, 119, 208-218.	1.9	27
32	Molecular dynamics simulations reveal the influence of dextran sulfate in nanoparticle formation with calcium alginate to encapsulate insulin. Journal of Biomolecular Structure and Dynamics, 2018, 36, 1255-1260.	2.0	7
33	Evaluation of antioxidant potencial of novel CaAl and NiAl layered double hydroxides loaded with olanzapine. Life Sciences, 2018, 207, 246-252.	2.0	9
34	Optimization of nanostructured lipid carriers for Zidovudine delivery using a microwave-assisted production method. European Journal of Pharmaceutical Sciences, 2018, 122, 22-30.	1.9	23
35	Enhancement of dissolution rate through eutectic mixture and solid solution of posaconazole and benznidazole. International Journal of Pharmaceutics, 2017, 525, 32-42.	2.6	59
36	Preparation and physicochemical characterization of binary composites palygorskite–chitosan for drug delivery. Journal of Thermal Analysis and Calorimetry, 2017, 128, 1327-1334.	2.0	13

#	Article	IF	CITATIONS
37	Multiple Lipid Nanoparticles (MLN), a New Generation of Lipid Nanoparticles for Drug Delivery Systems: Lamivudine-MLN Experimental Design. Pharmaceutical Research, 2017, 34, 1204-1216.	1.7	18
38	Obtaining the palygorskite:chitosan composite for modified release of 5-aminosalicylic acid. Materials Science and Engineering C, 2017, 73, 245-251.	3.8	16
39	Use of phyllosilicate clay mineral to increase solubility olanzapine. Journal of Thermal Analysis and Calorimetry, 2017, 127, 1743-1750.	2.0	7
40	Biopolymers and pilocarpine interaction study for use in drug delivery systems (DDS). Journal of Thermal Analysis and Calorimetry, 2017, 127, 1777-1785.	2.0	8
41	Tailoring Drug Release Properties by Gradual Changes in the Particle Engineering of Polysaccharide Chitosan Based Powders. Polymers, 2017, 9, 253.	2.0	16
42	Thermal characterization and kinetic study of the antiretroviral tenofovir disoproxil fumarate. Journal of Thermal Analysis and Calorimetry, 2017, 130, 1643-1651.	2.0	5
43	Development and Evaluation of Capsule of Sodium Diclofenac and Paracetamol Using Mesocarp Babassu Powder as Excipient - Part II. Materials Science Forum, 2016, 869, 849-853.	0.3	1
44	CaAl-layered double hydroxide as a drug delivery system: effects on solubility and toxicity of the antiretroviral efavirenz. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2016, 85, 281-288.	0.9	10
45	Theoretical and experimental studies of the stability of drug-drug interact. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 168, 45-51.	2.0	1
46	Gums' based delivery systems: Review on cashew gum and its derivatives. Carbohydrate Polymers, 2016, 147, 188-200.	5.1	98
47	Multicomponent systems with cyclodextrins and hydrophilic polymers for the delivery of Efavirenz. Carbohydrate Polymers, 2015, 130, 133-140.	5.1	29
48	A study of photostability and compatibility of the anti-chagas drug Benznidazole with pharmaceutics excipients. Drug Development and Industrial Pharmacy, 2015, 41, 63-69.	0.9	5
49	A compatibility study of the prototype epiisopiloturine and pharmaceutical excipients aiming at the attainment of solid pharmaceutical forms. Journal of Thermal Analysis and Calorimetry, 2015, 120, 689-697.	2.0	6
50	Preformulation study of ivermectin raw material. Journal of Thermal Analysis and Calorimetry, 2015, 120, 807-816.	2.0	18
51	Palygorskite organophilic for dermopharmaceutical application. Journal of Thermal Analysis and Calorimetry, 2014, 115, 2287-2294.	2.0	16
52	Solid dispersion of efavirenz in PVP K-30 by conventional solvent and kneading methods. Carbohydrate Polymers, 2014, 104, 166-174.	5.1	61
53	Anxiolytic Properties of New Chemical Entity, 5TIO1. Neurochemical Research, 2013, 38, 726-731.	1.6	24
54	Study of stability and drug-excipient compatibility of diethylcarbamazine citrate. Journal of Thermal Analysis and Calorimetry, 2013, 111, 2179-2186.	2.0	30

#	Article	IF	CITATIONS
55	The effect of natural and organophilic palygorskite on skin wound healing in rats. Brazilian Journal of Pharmaceutical Sciences, 2013, 49, 729-736.	1.2	11
56	ls Oxidative Stress in Mice Brain Regions Diminished by 2-[(2,6-Dichlorobenzylidene)amino]-5,6-dihydro-4 <i>H</i> -cyclopenta[<i>b</i>]thiophene-3-carbonitrile?. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-8.	1.9	6
57	Interaction of p-cymene with \hat{l}^2 -cyclodextrin. Journal of Thermal Analysis and Calorimetry, 2012, 109, 951-955.	2.0	59
58	Inclusion complex of methyl- \hat{l}^2 -cyclodextrin and olanzapine as potential drug delivery system for schizophrenia. Carbohydrate Polymers, 2012, 89, 1095-1100.	5.1	74
59	Assay and physicochemical characterization of the antiparasitic albendazole. Brazilian Journal of Pharmaceutical Sciences, 2012, 48, 281-290.	1.2	15
60	Study of benznidazole–cyclodextrin inclusion complexes, cytotoxicity and trypanocidal activity. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 73, 397-404.	1.6	25
61	Benznidazole drug delivery by binary and multicomponent inclusion complexes using cyclodextrins and polymers. Carbohydrate Polymers, 2012, 89, 323-330.	5.1	49
62	Improving the solubility of the antichagasic drug benznidazole through formation of inclusion complexes with cyclodextrins. Quimica Nova, 2011, 34, 1534-1538.	0.3	21
63	Thermal characterization of antimicrobial drug ornidazole and its compatibility in a solid pharmaceutical product. Journal of Thermal Analysis and Calorimetry, 2011, 104, 307-313.	2.0	22
64	Physicochemical study of solid-state benznidazole–cyclodextrin complexes. Journal of Thermal Analysis and Calorimetry, 2011, 106, 319-325.	2.0	15
65	The Use of Solid Dispersion Systems in Hydrophilic Carriers to Increase Benznidazole Solubility. Journal of Pharmaceutical Sciences, 2011, 100, 2443-2451.	1.6	53
66	A Preformulation Study of a New Medicine for Chagas Disease Treatment: Physicochemical Characterization, Thermal Stability, and Compatibility of Benznidazole. AAPS PharmSciTech, 2010, 11, 1391-1396.	1.5	28
67	Desenvolvimento de m $ ilde{A}$ ©todo anal $ ilde{A}$ tico para quantifica $ ilde{A}$ § $ ilde{A}$ £o do efavirenz por espectrofotometria no UV-Vis. Quimica Nova, 2010, 33, 1967-1972.	0.3	10
68	Development of new dissolution test and HPLC-RP method for anti-parasitic ornidazole coated tablets. Quimica Nova, 2010, 33, 478-481.	0.3	0
69	Development of dissolution method for benznidazole tablets. Quimica Nova, 2009, 32, 2196-2199.	0.3	5
70	Benznidazole. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o634-o634.	0.2	11
71	Development and in vitro evaluation of tablets based on the antichagasic benznidazole. BJPS: Brazilian Journal of Pharmaceutical Sciences, 2008, 44, .	0.5	3
72	Desenvolvimento de método analÃŧico por CLAE em comprimidos de Benznidazol para a Doença de Chagas. Quimica Nova, 2007, 30, 1163-1166.	0.3	11