
José Lamartine Soares Sobrinho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3966060/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gums' based delivery systems: Review on cashew gum and its derivatives. Carbohydrate Polymers, 2016, 147, 188-200.	5.1	98
2	Inclusion complex of methyl-î²-cyclodextrin and olanzapine as potential drug delivery system for schizophrenia. Carbohydrate Polymers, 2012, 89, 1095-1100.	5.1	74
3	Solid dispersion of efavirenz in PVP K-30 by conventional solvent and kneading methods. Carbohydrate Polymers, 2014, 104, 166-174.	5.1	61
4	Interaction of p-cymene with β-cyclodextrin. Journal of Thermal Analysis and Calorimetry, 2012, 109, 951-955.	2.0	59
5	Enhancement of dissolution rate through eutectic mixture and solid solution of posaconazole and benznidazole. International Journal of Pharmaceutics, 2017, 525, 32-42.	2.6	59
6	The Use of Solid Dispersion Systems in Hydrophilic Carriers to Increase Benznidazole Solubility. Journal of Pharmaceutical Sciences, 2011, 100, 2443-2451.	1.6	53
7	Solvent-free production of phthalated cashew gum for green synthesis of antimicrobial silver nanoparticles. Carbohydrate Polymers, 2019, 213, 176-183.	5.1	52
8	Benznidazole drug delivery by binary and multicomponent inclusion complexes using cyclodextrins and polymers. Carbohydrate Polymers, 2012, 89, 323-330.	5.1	49
9	Solvent-free synthesis of acetylated cashew gum for oral delivery system of insulin. Carbohydrate Polymers, 2019, 207, 601-608.	5.1	34
10	Study of stability and drug-excipient compatibility of diethylcarbamazine citrate. Journal of Thermal Analysis and Calorimetry, 2013, 111, 2179-2186.	2.0	30
11	Microwave-initiated rapid synthesis of phthalated cashew gum for drug delivery systems. Carbohydrate Polymers, 2021, 254, 117226.	5.1	30
12	Multicomponent systems with cyclodextrins and hydrophilic polymers for the delivery of Efavirenz. Carbohydrate Polymers, 2015, 130, 133-140.	5.1	29
13	A Preformulation Study of a New Medicine for Chagas Disease Treatment: Physicochemical Characterization, Thermal Stability, and Compatibility of Benznidazole. AAPS PharmSciTech, 2010, 11, 1391-1396.	1.5	28
14	Enhanced delivery of fixed-dose combination of synergistic antichagasic agents posaconazole-benznidazole based on amorphous solid dispersions. European Journal of Pharmaceutical Sciences, 2018, 119, 208-218.	1.9	27
15	Combining amorphous solid dispersions for improved kinetic solubility of posaconazole simultaneously released from soluble PVP/VA64 and an insoluble ammonio methacrylate copolymer. European Journal of Pharmaceutical Sciences, 2019, 133, 79-85.	1.9	27
16	Study of benznidazole–cyclodextrin inclusion complexes, cytotoxicity and trypanocidal activity. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 73, 397-404.	1.6	25
17	Anxiolytic Properties of New Chemical Entity, 5TIO1. Neurochemical Research, 2013, 38, 726-731.	1.6	24
18	Optimization of nanostructured lipid carriers for Zidovudine delivery using a microwave-assisted production method. European Journal of Pharmaceutical Sciences, 2018, 122, 22-30.	1.9	23

#	Article	IF	CITATIONS
19	Thermal characterization of antimicrobial drug ornidazole and its compatibility in a solid pharmaceutical product. Journal of Thermal Analysis and Calorimetry, 2011, 104, 307-313.	2.0	22
20	Improving the solubility of the antichagasic drug benznidazole through formation of inclusion complexes with cyclodextrins. Quimica Nova, 2011, 34, 1534-1538.	0.3	21
21	Influence of cyclodextrin on posaconazole stability, release and activity: Improve the utility of the drug. Journal of Drug Delivery Science and Technology, 2019, 53, 101153.	1.4	19
22	Preformulation study of ivermectin raw material. Journal of Thermal Analysis and Calorimetry, 2015, 120, 807-816.	2.0	18
23	Multiple Lipid Nanoparticles (MLN), a New Generation of Lipid Nanoparticles for Drug Delivery Systems: Lamivudine-MLN Experimental Design. Pharmaceutical Research, 2017, 34, 1204-1216.	1.7	18
24	One-pot synthesis of the organomodified layered double hydroxides - glibenclamide biocompatible nanoparticles. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111055.	2.5	18
25	Evaluation of chemometric approaches for polymorphs quantification in tablets using near-infrared hyperspectral images. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 134, 20-28.	2.0	17
26	Adsorption of tamoxifen on montmorillonite surface. Microporous and Mesoporous Materials, 2020, 297, 110012.	2.2	17
27	Palygorskite organophilic for dermopharmaceutical application. Journal of Thermal Analysis and Calorimetry, 2014, 115, 2287-2294.	2.0	16
28	Obtaining the palygorskite:chitosan composite for modified release of 5-aminosalicylic acid. Materials Science and Engineering C, 2017, 73, 245-251.	3.8	16
29	Tailoring Drug Release Properties by Gradual Changes in the Particle Engineering of Polysaccharide Chitosan Based Powders. Polymers, 2017, 9, 253.	2.0	16
30	Tamoxifen/montmorillonite system – Effect of the experimental conditions. Applied Clay Science, 2019, 180, 105142.	2.6	16
31	Physicochemical study of solid-state benznidazole–cyclodextrin complexes. Journal of Thermal Analysis and Calorimetry, 2011, 106, 319-325.	2.0	15
32	Assay and physicochemical characterization of the antiparasitic albendazole. Brazilian Journal of Pharmaceutical Sciences, 2012, 48, 281-290.	1.2	15
33	Hybrid systems of glibenclamide and layered double hydroxides for solubility enhancement for the treatment of diabetes mellitus II. Applied Clay Science, 2019, 181, 105218.	2.6	14
34	Preparation and physicochemical characterization of binary composites palygorskite–chitosan for drug delivery. Journal of Thermal Analysis and Calorimetry, 2017, 128, 1327-1334.	2.0	13
35	Desenvolvimento de método analÃŧico por CLAE em comprimidos de Benznidazol para a Doença de Chagas. Quimica Nova, 2007, 30, 1163-1166.	0.3	11
36	Benznidazole. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o634-o634.	0.2	11

#	Article	IF	CITATIONS
37	The effect of natural and organophilic palygorskite on skin wound healing in rats. Brazilian Journal of Pharmaceutical Sciences, 2013, 49, 729-736.	1.2	11
38	Desenvolvimento de método analÃŧico para quantificação do efavirenz por espectrofotometria no UV-Vis. Quimica Nova, 2010, 33, 1967-1972.	0.3	10
39	CaAl-layered double hydroxide as a drug delivery system: effects on solubility and toxicity of the antiretroviral efavirenz. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2016, 85, 281-288.	0.9	10
40	Eco-friendly synthesis of phthalate angico gum towards nanoparticles engineering using Quality by Design (QbD) approach. International Journal of Biological Macromolecules, 2021, 190, 801-809.	3.6	10
41	Synthesis of Eudragit® L100-coated chitosan-based nanoparticles for oral enoxaparin delivery. International Journal of Biological Macromolecules, 2021, 193, 450-456.	3.6	10
42	Evaluation of antioxidant potencial of novel CaAl and NiAl layered double hydroxides loaded with olanzapine. Life Sciences, 2018, 207, 246-252.	2.0	9
43	Intercalation of olanzapine into CaAl and NiAl Layered Double Hydroxides for dissolution rate improvement: Synthesis, characterization and in vitro toxicity. Journal of Drug Delivery Science and Technology, 2019, 52, 986-996.	1.4	9
44	Drug Delivery Systems on Leprosy Therapy: Moving Towards Eradication?. Pharmaceutics, 2020, 12, 1202.	2.0	9
45	Acetylated cashew gum and fucan for incorporation of lycopene rich extract from red guava (Psidium) Tj ETQq1 1 Biological Macromolecules, 2021, 191, 1026-1037.	0.784314 3.6	rgBT /Overl 9
46	Biopolymers and pilocarpine interaction study for use in drug delivery systems (DDS). Journal of Thermal Analysis and Calorimetry, 2017, 127, 1777-1785.	2.0	8
47	Use of phyllosilicate clay mineral to increase solubility olanzapine. Journal of Thermal Analysis and Calorimetry, 2017, 127, 1743-1750.	2.0	7
48	Molecular dynamics simulations reveal the influence of dextran sulfate in nanoparticle formation with calcium alginate to encapsulate insulin. Journal of Biomolecular Structure and Dynamics, 2018, 36, 1255-1260.	2.0	7
49	Stability study and oxidative degradation kinetics of posaconazole. Microchemical Journal, 2019, 151, 104181.	2.3	7
50	In-line monitoring of layered double hydroxide synthesis and insights on formation mechanism and kinetics. Applied Clay Science, 2019, 179, 105130.	2.6	7
51	ls Oxidative Stress in Mice Brain Regions Diminished by 2-[(2,6-Dichlorobenzylidene)amino]-5,6-dihydro-4 <i>H</i> -cyclopenta[<i>b</i>]thiophene-3-carbonitrile?. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-8.	1.9	6
52	A compatibility study of the prototype epiisopiloturine and pharmaceutical excipients aiming at the attainment of solid pharmaceutical forms. Journal of Thermal Analysis and Calorimetry, 2015, 120, 689-697.	2.0	6
53	Systematic evaluation of the impact of solid-state polymorphism on the bioavailability of thalidomide. European Journal of Pharmaceutical Sciences, 2019, 136, 104937.	1.9	6
54	The Potential Role of Polyelectrolyte Complex Nanoparticles Based on Cashew Gum, Tripolyphosphate and Chitosan for the Loading of Insulin. International Journal of Diabetology, 2021, 2, 107-116.	0.9	6

#	Article	IF	CITATIONS
55	Development of dissolution method for benznidazole tablets. Quimica Nova, 2009, 32, 2196-2199.	0.3	5
56	A study of photostability and compatibility of the anti-chagas drug Benznidazole with pharmaceutics excipients. Drug Development and Industrial Pharmacy, 2015, 41, 63-69.	0.9	5
57	New Perspectives in Drug Delivery Systems for the Treatment of Tuberculosis. Current Medicinal Chemistry, 2022, 29, 1936-1958.	1.2	5
58	Thermal characterization and kinetic study of the antiretroviral tenofovir disoproxil fumarate. Journal of Thermal Analysis and Calorimetry, 2017, 130, 1643-1651.	2.0	5
59	Nanostructured polymeric system based of cashew gum for oral admnistration of insulin. Revista Materia, 2019, 24, .	0.1	5
60	Simultaneous Quantification of Benznidazole and Posaconazole by HPLC-DAD Using QbD Approach. Journal of Chromatographic Science, 2019, 57, 156-162.	0.7	4
61	Influence of Nonmodified Layered Double Hydroxide (LDH) Metal Constituents in PMMA/LDH Nanocomposites. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 836-850.	1.9	4
62	Characterization, <i>in vitro</i> dissolution, and pharmacokinetics of different batches of efavirenz raw materials. Drug Development and Industrial Pharmacy, 2021, 47, 725-734.	0.9	4
63	Development and in vitro evaluation of tablets based on the antichagasic benznidazole. BJPS: Brazilian Journal of Pharmaceutical Sciences, 2008, 44, .	0.5	3
64	Strategies to improve glibenclamide dissolution: A review using database tomography. Journal of Drug Delivery Science and Technology, 2019, 54, 101242.	1.4	2
65	Why do few drug delivery systems to combat neglected tropical diseases reach the market? An analysis from the technology's stages. Expert Opinion on Therapeutic Patents, 2021, , 1-26.	2.4	2
66	Development of the stability-indicating method, structural elucidation of new photodegradation products from terconazole by LC-MS TOF, and in vitro toxicity. Journal of Pharmaceutical and Biomedical Analysis, 2022, 216, 114794.	1.4	2
67	Development and Evaluation of Capsule of Sodium Diclofenac and Paracetamol Using Mesocarp Babassu Powder as Excipient - Part II. Materials Science Forum, 2016, 869, 849-853.	0.3	1
68	Theoretical and experimental studies of the stability of drug-drug interact. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 168, 45-51.	2.0	1
69	The Perspectives of Patients and Health Professionals Regarding the Tuberculosis Control Programme in Recife, Brazil: A Contribution to Evaluation. Pharmacy (Basel, Switzerland), 2019, 7, 70.	0.6	1
70	Consensual improvement actions for the Tuberculosis Control Programme in Pernambuco state, Brazil: an e-Delphi study. AIMS Public Health, 2019, 6, 229-241.	1.1	1
71	Development of new dissolution test and HPLC-RP method for anti-parasitic ornidazole coated tablets. Quimica Nova, 2010, 33, 478-481.	0.3	0
72	Enhanced Dissolution Efficiency of Tamoxifen Combined with Methacrylate Copolymers in Amorphous Solid Dispersions. Crystals, 2020, 10, 1046.	1.0	0