Joulia Larionova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3966001/publications.pdf

Version: 2024-02-01

66315 82499 6,220 152 42 72 citations h-index g-index papers 156 156 156 5821 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	2-Imino-2,3-dihydrobenzoxazole—a useful platform for designing rare- and alkaline earth complexes with variable di- and trianionic O,N,N, ligands. Dalton Transactions, 2022, 51, 1995-2004.	1.6	4
2	Using N-Heterocyclic Carbenes as Weak Equatorial Ligands to Design Single-Molecule Magnets: Zero-Field Slow Relaxation in Two Octahedral Dysprosium(III) Complexes. Inorganic Chemistry, 2022, 61, 1264-1269.	1.9	5
3	Grafted mesoporous silicas for radionuclide uptake: Radiolytic stability under electron irradiation. Microporous and Mesoporous Materials, 2022, 336, 111851.	2.2	2
4	Nanoheterostructures based on nanosized Prussian blue and its Analogues: Design, properties and applications. Coordination Chemistry Reviews, 2022, 461, 214497.	9.5	21
5	Employing three-blade propeller lanthanide complexes as molecular luminescent thermometers: study of temperature sensing through a concerted experimental/theory approach. Journal of Materials Chemistry C, 2022, 10, 7176-7188.	2.7	25
6	Post-synthetic modification of Prussian blue type nanoparticles: tailoring the chemical and physical properties. Inorganic Chemistry Frontiers, 2022, 9, 3943-3971.	3.0	5
7	An unusual mechanism of building up of a high magnetization blocking barrier in an octahedral alkoxide Dy ³⁺ -based single-molecule magnet. Inorganic Chemistry Frontiers, 2021, 8, 1166-1174.	3.0	37
8	High magnetization reversal barriers in luminescent dysprosium octahedral and pentagonal bipyramidal single-molecule magnets based on fluorinated alkoxide ligands. Dalton Transactions, 2021, 50, 8487-8496.	1.6	17
9	Designing heterostructured core@satellite Prussian Blue Analogue@Au–Ag nanoparticles: Effect on the magnetic properties and catalytic activity. Inorganic Chemistry Frontiers, 2021, 8, 2248-2260.	3.0	8
10	Heat Release Kinetics upon Water Vapor Sorption Using Cation-Exchanged Zeolites and Prussian Blue Analogues as Adsorbents: Application to Short-Term Low-Temperature Thermochemical Storage of Energy. Energies, 2021, 14, 3505.	1.6	4
11	Synthesis, Structures and Magnetic Properties of two Heteroleptic Dy ³⁺ Borohydride Complexes. European Journal of Inorganic Chemistry, 2021, 2021, 3008-3012.	1.0	6
12	New Magnetic and Luminescent Dy(III) and Dy(III)/Y(III) Based Tetranuclear Silsesquioxane Cages. European Journal of Inorganic Chemistry, 2021, 2021, 2696-2701.	1.0	19
13	Novel carbonate/pyridine tetranuclear nickel complex, exhibiting slow relaxation of the magnetization. Journal of Organometallic Chemistry, 2021, 942, 121815.	0.8	7
14	A Novel Approach to the Facile Growth and Organization of Photothermal Prussian Blue Nanocrystals on Different Surfaces. Nanomaterials, 2021, 11, 1749.	1.9	2
15	Structural Diversity of Lanthanide Chain Compounds Based on 3-Ethoxycinnamate: Influence on the Magnetic Properties. Crystal Growth and Design, 2021, 21, 5072-5085.	1.4	1
16	Synthesis, crystal structures, luminescent and magnetic properties of rare earth dinuclear complexes and one-dimensional coordination polymers supported by two derivatives of cinnamic acid. Polyhedron, 2021, 207, 115366.	1.0	8
17	A rational study of the influence of Mn2+-insertion in Prussian blue nanoparticles on their photothermal properties. Journal of Materials Chemistry B, 2021, 9, 9670-9683.	2.9	6
18	Synchronous Temperature and Magnetic Field Dualâ€Sensing by Luminescence in a Dysprosium Singleâ€Molecule Magnet. Advanced Optical Materials, 2021, 9, 2101495.	3.6	24

#	Article	IF	CITATIONS
19	Temperature sensing in Tb ³⁺ /Eu ³⁺ -based tetranuclear silsesquioxane cages with tunable emission. RSC Advances, 2021, 11, 34735-34741.	1.7	15
20	Adsorption of volatile organic compounds by ZIF-8, Cu-BTC and a Prussian blue analogue: A comparative study. Inorganica Chimica Acta, 2020, 501, 119316.	1.2	14
21	A π-Carbazolyl Dy(III) Half-Sandwich Complex Showing Single-Molecule-Magnet Behavior. Organometallics, 2020, 39, 2785-2790.	1.1	4
22	Single-molecule magnet behavior in heterolopetic Dy ³⁺ -chloro-diazabutadiene complexes: influence of the nuclearity and ligand redox state. Dalton Transactions, 2020, 49, 11890-11901.	1.6	17
23	New Luminescent Tetranuclear Lanthanideâ€Based Silsesquioxane Cage‣ike Architectures. Chemistry - A European Journal, 2020, 26, 16594-16598.	1.7	24
24	Investigation of the slow relaxation of the magnetization dynamics in homoleptic ene-diamido organodysprosium(<scp>iii</scp>) complexes with K ⁺ /arene interactions. CrystEngComm, 2020, 22, 4260-4267.	1.3	6
25	Fashioning Prussian Blue Nanoparticles by Adsorption of Luminophores: Synthesis, Properties, and in Vitro Imaging. Inorganic Chemistry, 2020, 59, 4567-4575.	1.9	11
26	Heteroleptic Lanthanide Complexes Coordinated by Tripodal Tetradentate Ligand: Synthesis, Structure, and Magnetic and Photoluminescent Properties. Crystal Growth and Design, 2020, 20, 5184-5192.	1.4	4
27	Synthesis, Structure, Magnetic and Photoluminescent Properties of Dysprosium(III) Schiff Base Singleâ€Molecule Magnets: Investigation of the Relaxation of the Magnetization. Chemistry - an Asian Journal, 2020, 15, 2706-2715.	1.7	10
28	Synthesis, structure, magnetic and luminescence properties of two dysprosium single-molecule magnets based on phenoxide dye ligands. CrystEngComm, 2020, 22, 1909-1913.	1.3	2
29	Single-molecule magnet behavior in luminescent carbazolyl Dy(<scp>iii</scp>) octahedral complexes with a quasi linear N ^{â^¹} aê"Dy–N ^{â^¹} angle. Dalton Transactions, 2020, 49, 4039-4043.	1.6	11
30	Synergic effect of doxorubicin release and two-photon irradiation of Mn ²⁺ -doped Prussian blue nanoparticles on cancer therapy. RSC Advances, 2020, 10, 2646-2649.	1.7	10
31	Room temperature magnetoelectric coupling in a molecular ferroelectric ytterbium(III) complex. Science, 2020, 367, 671-676.	6.0	114
32	A Switch in the Hydrophobic/Hydrophilic Gasâ€Adsorption Character of Prussian Blue Analogues: An Affinity Control for Smart Gas Sorption. Chemistry - A European Journal, 2019, 25, 479-484.	1.7	17
33	Synthesis, structure and magnetic properties of a series of Ln(<scp>iii</scp>) complexes with radical-anionic iminopyridine ligands: effect of lanthanide ions on the slow relaxation of the magnetization. Dalton Transactions, 2019, 48, 12018-12022.	1.6	15
34	Synthesis, structure and magnetic properties of a series of dinuclear heteroleptic Zn ²⁺ /Ln ³⁺ Schiff base complexes: effect of lanthanide ions on the slow relaxation of magnetization. Dalton Transactions, 2019, 48, 11637-11641.	1.6	5
35	Magnetic cage-like metallasilsesquioxanes. Coordination Chemistry Reviews, 2019, 398, 213015.	9.5	28
36	Single-molecule magnet behaviour in a Dy(<scp>iii</scp>) pentagonal bipyramidal complex with a quasi-linear Cl–Dy–Cl sequence. Dalton Transactions, 2019, 48, 35-39.	1.6	18

#	Article	IF	Citations
37	Making Prussian blue analogues nanoparticles luminescent: effect of the luminophore confinement over the properties. Nanoscale, 2019, 11, 7097-7101.	2.8	8
38	Crossover from Antiferromagnetic to Ferromagnetic Exchange Coupling in a New Family of Bis-(μ-phenoxido)dicopper(II) Complexes: A Comprehensive Magneto–Structural Correlation by Experimental and Theoretical Study. ACS Omega, 2019, 4, 10558-10570.	1.6	13
39	Water Dispersible Carbohydrate-Coated Ferrite Nanoparticles. Effect of Cobalt Doping in Magneto-Thermal Properties. Journal of Nanoscience and Nanotechnology, 2019, 19, 5000-5007.	0.9	2
40	Gold@Prussian blue analogue core–shell nanoheterostructures: their optical and magnetic properties. Dalton Transactions, 2019, 48, 6205-6216.	1.6	13
41	Controlled Anchoring of Iron Oxide Nanoparticles on Polymeric Nanofibers: Easy Access to Core@Shell Organic–Inorganic Nanocomposites for Magneto-Scaffolds. ACS Applied Materials & Interfaces, 2019, 11, 9519-9529.	4.0	29
42	A simple approach for controlled deposition of Prussian blue analogue nanoparticles on a functionalised plasmonic gold surface. New Journal of Chemistry, 2019, 43, 3660-3664.	1.4	5
43	Enantioselective separation under humid conditions by chiral Hofmann clathrates: new opportunities for vintage materials. Inorganic Chemistry Frontiers, 2019, 6, 3245-3254.	3.0	7
44	Dysprosium Singleâ€Molecule Magnets with Bulky Schiff Base Ligands: Modification of the Slow Relaxation of the Magnetization by Substituent Change. Chemistry - A European Journal, 2019, 25, 474-478.	1.7	27
45	Single-Molecule Magnet Behavior in Dy ³⁺ Half-Sandwich Complexes Based on Ene-Diamido and Cp* Ligands. Organometallics, 2019, 38, 748-752.	1.1	16
46	Synthesis, structure and magnetic properties of tris(pyrazolyl)methane lanthanide complexes: effect of the anion on the slow relaxation of magnetization. Dalton Transactions, 2018, 47, 5153-5156.	1.6	23
47	Multifunctional manganese-doped Prussian blue nanoparticles for two-photon photothermal therapy and magnetic resonance imaging. Photodiagnosis and Photodynamic Therapy, 2018, 22, 65-69.	1.3	25
48	New Ni ₄ Na ₂ -phenylgermsesquioxane architecture: synthesis, structure and slow dynamic behaviour. Dalton Transactions, 2018, 47, 6893-6897.	1.6	12
49	A luminescent Schiff-base heterotrinuclear Zn2Dy single-molecule magnet with an axial crystal field. Dalton Transactions, 2018, 47, 1402-1406.	1.6	30
50	Recent advances in luminescent lanthanide based Single-Molecule Magnets. Coordination Chemistry Reviews, 2018, 363, 57-70.	9.5	226
51	Elasticity of Prussianâ€Blueâ€Analogue Nanoparticles. European Journal of Inorganic Chemistry, 2018, 2018, 443-448.	1.0	12
52	Synthesis, structure and magnetic properties of the dinuclear complex [1,3-C6H4{NC(Ph)N(SiMe3)}2]3Dy2 coordinated by ansa-bis(amidinate) ligands with a m-phenylene linker. Mendeleev Communications, 2018, 28, 521-523.	0.6	2
53	Synthesis, structure and magnetic investigations of dinuclear lanthanide complexes based on 2-ethoxycinnamate. Dalton Transactions, 2018, 47, 13647-13656.	1.6	5
54	Field-Induced Slow Relaxation in a Dinuclear Dysprosium(III) Complex Based on 3-Methoxycinnamic Acid. Inorganics, 2018, 6, 35.	1.2	9

#	Article	IF	CITATIONS
55	Cinnamic acid derivative rare-earth dinuclear complexes and one-dimensional architectures: synthesis, characterization and magnetic properties. Dalton Transactions, 2017, 46, 3943-3952.	1.6	31
56	Engineered Au Core@Prussian Blue Analogous Shell Nanoheterostructures: Their Magnetic and Optical Properties. Chemistry - A European Journal, 2017, 23, 7483-7496.	1.7	10
57	An organolanthanide(<scp>iii</scp>) single-molecule magnet with an axial crystal-field: influence of the Raman process over the slow relaxation. Chemical Communications, 2017, 53, 4706-4709.	2.2	43
58	In situ synthesis of Prussian blue nanoparticles within a biocompatible reverse micellar system for in vivo Cs+uptake. New Journal of Chemistry, 2017, 41, 2887-2890.	1.4	13
59	Family of Polynuclear Nickel Cagelike Phenylsilsesquioxanes; Features of Periodic Networks and Magnetic Properties. Inorganic Chemistry, 2017, 56, 12751-12763.	1.9	36
60	²⁰¹ Tl-labeled Prussian blue and Au@Prussian blue nanoprobes for SPEC-CT imaging: influence of the size, shape and coating on the biodistribution. Inorganic Chemistry Frontiers, 2017, 4, 1737-1741.	3.0	12
61	Rareâ€Earth Complexes Coordinated by <i>ansa</i> â€Bis(amidinate) Ligands with <i>m</i> â€Phenylene, 2,6â€Pyridinediyl, and SiMe ₂ Linkers. European Journal of Inorganic Chemistry, 2017, 2017, 4275-4284.	1.0	13
62	Tuning linkage isomerism and magnetic properties of bi- and tri-metallic cage silsesquioxanes by cation and solvent effects. Dalton Transactions, 2017, 46, 12935-12949.	1.6	32
63	Prussian Blue Analogues for the Separation of Hydrocarbons in Humid Conditions. Inorganic Chemistry, 2017, 56, 7598-7601.	1.9	28
64	Synthesis of poly(diallyldimethylammonium) capped copper hexacyanoferrate (CuHCF) nanoparticles: An efficient stabiliser for Pickering emulsions. Journal of Colloid and Interface Science, 2017, 505, 364-372.	5.0	9
65	Magneto-Luminescence Correlation in the Textbook Dysprosium(III) Nitrate Single-Ion Magnet. Magnetochemistry, 2016, 2, 41.	1.0	36
66	Rhamnoseâ€coated superparamagnetic ironâ€oxide nanoparticles: an evaluation of their ⟨i⟩in vitro⟨ i⟩ cytotoxicity, genotoxicity and carcinogenicity. Journal of Applied Toxicology, 2016, 36, 510-520.	1.4	14
67	A heterometallic (Fe ₆ Na ₈) cage-like silsesquioxane: synthesis, structure, spin glass behavior and high catalytic activity. RSC Advances, 2016, 6, 48165-48180.	1.7	53
68	Electrochemical Li-lon Intercalation in Octacyanotungstate-Bridged Coordination Polymer with Evidence of Three Magnetic Regimes. Inorganic Chemistry, 2016, 55, 7637-7646.	1.9	19
69	Study of the influence of magnetic dilution over relaxation processes in a Zn/Dy single-ion magnet by correlation between luminescence and magnetism. RSC Advances, 2016, 6, 108810-108818.	1.7	20
70	Cageâ€like Fe,Naâ€Germsesquioxanes: Structure, Magnetism, and Catalytic Activity. Angewandte Chemie - International Edition, 2016, 55, 15360-15363.	7.2	36
71	Unusual penta- and hexanuclear Ni(<scp>ii</scp>)-based silsesquioxane polynuclear complexes. Dalton Transactions, 2016, 45, 7320-7327.	1.6	44
72	Effect of the chemical nature of different transition metal ferrocyanides to entrap Cs. Journal of Radioanalytical and Nuclear Chemistry, 2016, 307, 427-436.	0.7	24

#	Article	IF	Citations
7 3	Heterometallic Na ₆ Co ₃ Phenylsilsesquioxane Exhibiting Slow Dynamic Behavior in its Magnetization. Chemistry - A European Journal, 2015, 21, 18563-18565.	1.7	38
74	A Highâ€Temperature Molecular Ferroelectric Zn/Dy Complex Exhibiting Singleâ€Ionâ€Magnet Behavior and Lanthanide Luminescence. Angewandte Chemie - International Edition, 2015, 54, 2236-2240.	7.2	220
7 5	Base-Free Lanthanoidocenes(II) Coordinated by Bulky Pentabenzylcyclopentadienyl Ligands. Organometallics, 2015, 34, 1991-1999.	1.1	22
76	Understanding the Host/Guest Interactions in Iodine/Hofmann-Type Clathrate Ni(pz)[Ni(CN)4] System. Journal of Physical Chemistry C, 2015, 119, 9395-9401.	1.5	21
77	Ytterbium(III) Complexes Coordinated by Dianionic 1,4-Diazabutadiene Ligands. Organometallics, 2015, 34, 1177-1185.	1.1	28
78	An Organoytterbium(III) Complex Exhibiting Field-Induced Single-Ion-Magnet Behavior. Inorganic Chemistry, 2015, 54, 7667-7669.	1.9	29
79	Nanosized Heterostructures of Au@Prussian Blue Analogues: Towards Multifunctionality at the Nanoscale. Angewandte Chemie - International Edition, 2014, 53, 3872-3876.	7.2	44
80	Thermal and sonochemical synthesis of porous (Ce,Zr)O2 mixed oxides from metal \hat{l}^2 -diketonate precursors and their catalytic activity in wet air oxidation process of formic acid. Ultrasonics Sonochemistry, 2014, 21, 1366-1373.	3.8	15
81	lodine Capture by Hofmann-Type Clathrate Ni ^{II} (pz)[Ni ^{II} (CN) ₄]. Inorganic Chemistry, 2014, 53, 4269-4271.	1.9	36
82	Ultrasmall NHC-coated gold nanoparticles obtained through solvent free thermolysis of organometallic Au(i) complexes. Dalton Transactions, 2014, 43, 15713-15718.	1.6	59
83	NMR as Evaluation Strategy for Cellular Uptake of Nanoparticles. Nano Letters, 2014, 14, 3959-3965.	4.5	5
84	Integrative Synthesis of Coordination Polymers, Metal Oxides, and Alloys Magnetic Nanoparticles in MSU Mesoporous Silica. Chemistry of Materials, 2014, 26, 875-885.	3.2	15
85	Spin crossover polysaccharide nanocomposites. New Journal of Chemistry, 2013, 37, 3420.	1.4	31
86	Sonohydrothermal Synthesis of Nanostructured (Ce,Zr)O ₂ Mixed Oxides with Enhanced Catalytic Performance. Journal of Physical Chemistry C, 2013, 117, 22827-22833.	1.5	21
87	Enhanced Cooperative Interactions at the Nanoscale in Spin-Crossover Materials with a First-Order Phase Transition. Physical Review Letters, 2013, 110, 235701.	2.9	109
88	An Original "Click and Bind―Approach for Immobilizing Copper Hexacyanoferrate Nanoparticles on Mesoporous Silica. Chemistry of Materials, 2013, 25, 4447-4453.	3.2	62
89	Investigation on NMR Relaxivity of Nano-Sized Cyano-Bridged Coordination Polymers. Inorganic Chemistry, 2013, 52, 13402-13414.	1.9	48
90	Syntheses, Crystal Structures, and Magnetic Properties of MnIII(L)phosphinate Complexes (L) Tj ETQq0 0 0 rgBT 3206-3216.	Overlock	2 10 Tf 50 67 T 13

#	Article	IF	CITATIONS
91	A bifunctional luminescent single-ion magnet: towards correlation between luminescence studies and magnetic slow relaxation processes. Chemical Communications, 2012, 48, 9974.	2.2	171
92	Controlled synthesis from alginate gels of cobalt–manganese mixed oxide nanocrystals with peculiar magnetic properties. Catalysis Today, 2012, 189, 49-54.	2.2	16
93	Extraction of radioactive cesium using innovative functionalized porous materials. RSC Advances, 2012, 2, 5707.	1.7	165
94	Bifunctional Mixed-Lanthanide Cyano-Bridged Coordination Polymers Ln0.5Lnâ€20.5(H2O)5[W(CN)8] (Ln/Lnâ€2)	Ţį ĘTQq0	0 0 rgBT /O 41
95	Synthesis and study of Prussian blue type nanoparticles in an alginate matrix. Journal of Materials Chemistry, 2012, 22, 20232.	6.7	44
96	Peculiar Field-Dependent Magnetic Behavior of Cyano-Bridged Coordination Polymer Er(H2O)4[W(CN)8]. Inorganic Chemistry, 2012, 51, 6425-6427.	1.9	16
97	Superspin-glass behavior of Co3[Fe(CN)6]2 Prussian blue nanoparticles confined in mesoporous silica. Materials Chemistry and Physics, 2012, 132, 438-445.	2.0	26
98	Nanoscale coordination polymers exhibiting luminescence properties and NMR relaxivity. Nanoscale, 2011, 3, 1200.	2.8	50
99	Sterically Governed Redox Reactions. One-Electron Oxidation of Ytterbocenes by Diazabutadienes: Formation of Radical-Anionic Diazabutadiene vs Covalently Bonded Imino–Amido Ligand. Organometallics, 2011, 30, 4882-4889.	1.1	26
100	Autocatalytic sonolysis of iron pentacarbonyl in room temperature ionic liquid [BuMeIm][Tf ₂ N]. Physical Chemistry Chemical Physics, 2011, 13, 2111-2113.	1.3	6
101	Near-Infrared Luminescent and Magnetic Cyano-Bridged Coordination Polymers Nd(phen)n(DMF)m[M(CN)8] (M = Mo, W). Inorganic Chemistry, 2011, 50, 9924-9926.	1.9	28
102	Water-Dispersible Sugar-Coated Iron Oxide Nanoparticles. An Evaluation of their Relaxometric and Magnetic Hyperthermia Properties. Journal of the American Chemical Society, 2011, 133, 10459-10472.	6.6	236
103	Controlled Growth of Cyano-Bridged Coordination Polymers into Layered Double Hydroxides. Journal of Physical Chemistry C, 2011, 115, 3263-3271.	1.5	34
104	Functionalized porous glass for the removal and the confinement of ruthenium from radioactive solutions. Journal of Nuclear Materials, 2010, 400, 25-31.	1.3	8
105	Synthesis and studies of water-soluble Prussian Blue-type nanoparticles into chitosan beads. Physical Chemistry Chemical Physics, 2010, 12, 12760.	1.3	40
106	Mesoporous silica nanoparticles combining two-photon excited fluorescence and magnetic properties. Journal of Materials Chemistry, 2010, 20, 1877.	6.7	33
107	Electrical Conductivity of RuO ₂ –Borosilicate Glasses: Effect of the Synthesis Route. Journal of the American Ceramic Society, 2009, 92, 1560-1566.	1.9	23
108	Half-Sandwich Lanthanide(III) Complexes Coordinated by Two \hat{l}_{\pm} -Iminopyridine Radical Anions. Organometallics, 2009, 28, 6707-6713.	1.1	28

#	Article	IF	CITATIONS
109	Cyano-bridged coordination polymer nanoparticles. New Journal of Chemistry, 2009, 33, 1177.	1.4	70
110	Toward Organization of Cyano-Bridged Coordination Polymer Nanoparticles within an Ionic Liquid Crystal. Langmuir, 2009, 25, 1138-1147.	1.6	44
111	Luminescent and Magnetic Cyano-Bridged Coordination Polymers Containing 4dâ ² 4f Ions: Toward Multifunctional Materials. Inorganic Chemistry, 2009, 48, 5983-5995.	1.9	134
112	Water-Soluble Rhamnose-Coated Fe ₃ O ₄ Nanoparticles. Organic Letters, 2009, 11, 2992-2995.	2.4	52
113	Synthesis of Co3[Fe(CN)6]2 molecular-based nanomagnets in MSU mesoporous silica by integrative chemistry. New Journal of Chemistry, 2009, 33, 2449.	1.4	24
114	Coordination polymer nano-objects into ionic liquids: Nanoparticles and superstructures. Inorganica Chimica Acta, 2008, 361, 3988-3996.	1.2	30
115	Experimental and theoretical study of the spin ground state of the high-spin molecular cluster [Nill{Nill(CH3OH)3}8(\hat{l} ½-CN)30{WV(CN)3}6]Å-15CH3OH by polarised neutron diffraction and density functional theory calculations. Inorganica Chimica Acta, 2008, 361, 3609-3615.	1.2	7
116	The Canted Antiferromagnetic Approach to Single-Chain Magnets. Journal of the American Chemical Society, 2008, 130, 1619-1627.	6.6	180
117	Cyano-bridged coordination polymer nanoparticles with high nuclear relaxivity: toward new contrast agents for MRI. Dalton Transactions, 2008, , 3658.	1.6	68
118	Synthesis and behaviour of size controlled cyano-bridged coordination polymernanoparticles within hybrid mesoporous silica. New Journal of Chemistry, 2008, 32, 273-282.	1.4	68
119	A Luminescent and Magnetic Cyano-Bridged Tb ³⁺ â^'Mo ⁵⁺ Coordination Polymer:  toward Multifunctional Materials. Inorganic Chemistry, 2008, 47, 775-777.	1.9	128
120	Soluble Ligand-Stabilized Cyano-Bridged Coordination Polymer Nanoparticles. Chemistry of Materials, 2008, 20, 1367-1375.	3.2	39
121	Steric Manipulation of the Reductive Reactivity of Ytterbocenes toward $2-(((2,6-Diisopropylphenyl)imino)methyl)pyridine: Â Insertion of the NC Bond into the Ybâ^'Indenyl Bond or Oxidative Cleavage of the Î-5Ybâ^'Cp (Cp = C13H9, Cp*) Bond. Organometallics, 2007, 26, 2488-2491.$	1.1	43
122	Neutron Diffraction and Theoretical DFT Studies of Two Dimensional Molecular-Based Magnet K2[Mn(H2O)2]3[Mo(CN)7]2·6H2O. Inorganic Chemistry, 2007, 46, 1090-1099.	1.9	32
123	Ytterbocenes as One- and Two-Electron Reductants in their Reactions with Diazadienes: YbIII Mixed-Ligand Bent-Sandwich Complexes Containing a Dianion of Diazabutadiene. Chemistry - A European Journal, 2007, 13, 4981-4987.	1.7	62
124	Synthesis of soluble coordination polymer nanoparticles using room-temperature ionic liquid. Inorganica Chimica Acta, 2007, 360, 3829-3836.	1.2	19
125	A coordination polymer precursor approach to the synthesis of NiFe bimetallic nanoparticles within hybrid mesoporous silica. Journal of Materials Chemistry, 2006, 16, 4435-4442.	6.7	42
126	Magnetic water-soluble cyano-bridged metal coordination nano-polymers. Chemical Communications, 2006, , 2613-2615.	2.2	74

#	Article	IF	CITATIONS
127	Synthesis of Cyano-Bridged Magnetic Nanoparticles Using Room-Temperature Ionic Liquids. Chemistry - A European Journal, 2006, 12, 3798-3804.	1.7	100
128	Synthesis of MnOOH nanorods by cluster growth route from [Mn12O12(RCOO)16(H2O)n] (R=CH3,) Tj ETQqO Chemistry, 2005, 178, 2368-2375.	0 0 rgBT /0 1.4	Overlock 10 T 55
129	Cation templation of Mn2+/[Mo(CN)7]4â^' system: Formation of pseudo-dimorphs (NH4)2Mn3(H2O)4[Mo(CN)7]2·nH2O (n=4, 5). Polyhedron, 2005, 24, 1033-1046.	1.0	5
130	Magnetic Anisotropy of [Mo(CN)7]4- Anions and Fragments of Cyano-Bridged Magnetic Networks. Journal of Physical Chemistry A, 2005, 109, 7251-7257.	1.1	38
131	Symmetry and Topology Determine the MoV-CN-MnIIExchange Interactions in High-Spin Molecules. Angewandte Chemie - International Edition, 2005, 44, 2711-2715.	7.2	69
132	Formation of cyano-bridged molecule-based magnetic nanoparticles within hybrid mesoporous silica. New Journal of Chemistry, 2005, 29, 275-279.	1.4	58
133	[NH4]2Mn3(H2O)4[Mo(CN)7]2·4H2O: Tuning Dimensionality and Ferrimagnetic Ordering Temperature by Cation Substitution. Inorganic Chemistry, 2004, 43, 4784-4786.	1.9	33
134	Crystal engineering in two- and three-dimensional systems based on cyanomolybdates: structures, magnetism and intercalation properties. Journal of Physics and Chemistry of Solids, 2004, 65, 677-691.	1.9	38
135	Synthesis and characterization of magnetic organic-inorganic nanocomposites based on the [Mn2O12{CH2C(CH3)COO}16(H2O)4] building block. New Journal of Chemistry, 2004, 28, 919-928.	1.4	27
136	Formation of Mn3O4nanoparticles from the cluster [Mn12O12(C2H5COO)16(H2O)3] anchored to hybrid mesoporous silica. Journal of Materials Chemistry, 2004, 14, 2703-2711.	6.7	45
137	Synthesis of magnetic silica-based nanocomposites containing Fe3O4nanoparticles. Journal of Materials Chemistry, 2004, 14, 3026-3033.	6.7	63
138	Crystal Structures and Intercalation Reactions of Three-Dimensional Coordination Polymers $[M(H2O)2]2[Mo(CN)8]\hat{A}\cdot 4H2O$ (M = Co, Mn). European Journal of Inorganic Chemistry, 2003, 2003, 1866-1872.	1.0	60
139	Synthesis and Structure of a Two-Dimensional Cyano-Bridged Coordination Polymer [Cu(cyclam)]2[Mo(CN)8] $\hat{A}\cdot 10.5$ H2O (Cyclam = 1,4,8,11-Tetraazacyclodecane). Crystal Growth and Design, 2003, 3, 267-272.	1.4	43
140	Immobilisation of single molecule magnets in mesoporous silica hosts. New Journal of Chemistry, 2003, 27, 1533-1539.	1.4	37
141	Structural and magnetic studies of the [Mn12O12(CH3COO)16(H2O)4]·2CH3COOH·4H2O thermal derivatives. Journal of Materials Chemistry, 2003, 13, 795-799.	6.7	15
142	[N(CH3)4]2[Mn(H2O)]3[Mo(CN)7]2â<2 H2O: A New High Tc Cyano-Bridged Ferrimagnet Based on the [MolII(CN)7]4â^ Building Block and Induced by Counterion Exchange. Chemistry - A European Journal, 2002, 8, 2712.	1.7	46
143	High-Spin Molecules: A Novel Cyano-Bridged MnMo Molecular Cluster with aS=51/2 Ground State and Ferromagnetic Intercluster Ordering at Low Temperatures. Angewandte Chemie - International Edition, 2000, 39, 1605-1609.	7.2	324

 $Magnetic\ Transitions\ in\ the\ Cyano-Bridged\ Bimetallic\ Ferromagnet\ Mn2(H2O)5Mo(CN)7\^{A}\cdot 4.75H2O\ (\^{l}^2)\ Tj\ ETQq0\ 0\ 1.9\ rgBT\ /Oyerlock\ 10\ Arguntario 10\ A$

O

144

#	Article	IF	CITATIONS
145	Structure, Ferromagnetic Ordering, Anisotropy, and Spin Reorientation for the Two-Dimensional Cyano-Bridged Bimetallic Compound K2Mn3(H2O)6[Mo(CN)7]2Â-6H2O. Journal of the American Chemical Society, 1999, 121, 3349-3356.	6.6	123
146	Molecular Magnetic Sponges. Chemistry - A European Journal, 1999, 5, 3443-3449.	1.7	145
147	Heat Capacity, Alternating Current Magnetic Susceptibilities, and Pressure Effect for the Cyano-Bridged Bimetallic Ferromagnet Mn2(H2O)5Mo(CN)7·4H2O (α Phase). Chemistry of Materials, 1999, 11, 3400-3405.	3.2	20
148	Ferromagnetic Ordering, Anisotropy, and Spin Reorientation for the Cyano-Bridged Bimetallic Compound Mn2(H2O)5Mo(CN)7Å·4H2O (l± Phase). Journal of the American Chemical Society, 1998, 120, 13088-13095.	6.6	142
149	Magnetic Properties of the Two-Dimensional Bimetallic Compounds (NBu4)[MIIRulII(ox)3] (NBu4=) Tj ETQq1 1 C	0.784314	rgBT/Overlo
150	Dc and ac magnetic properties of the two-dimensional molecular-based ferrimagnetic materials A2M2[Cu(opba)]3nsolv [A+=cation, MII=MnII or CoII, opba=ortho-phenylenebis(oxamato) and solv=solvent molecule]. Journal of Materials Chemistry, 1997, 7, 1263-1270.	6.7	37
151	Dramatic Modifications of Magnetic Properties through Dehydrationâ^'Rehydration Processes of the Molecular Magnetic Sponges CoCu(obbz)(H2O)4·2H2O and CoCu(obze)(H2O)4·2H2O, with obbz = N,Nâ€⁻-Bis(2-carboxyphenyl)oxamido and obze = N-(2-Carboxyphenyl)-Nâ€⁻-(carboxymethyl)oxamido. Inorganic Chemistry, 1997, 36, 6374-6381.	1.9	123
152	Tuning the coordination sphere of octahedral Dy(III) complexes with silanolate/stannanolate ligands: synthesis, structures and slow relaxation of the magnetization. CrystEngComm, 0, , .	1.3	2