Tomasz Durejko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3965179/publications.pdf

Version: 2024-02-01

687220 526166 28 904 13 27 citations h-index g-index papers 28 28 28 958 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Thermo-oxidative aging of the polyoxymethylene (POM), acrylonitrileâ \in "butadieneâ \in "styrene (ABS) and polycarbonate (PC) polymers â \in " a comparative study. Journal of Polymer Research, 2022, 29, .	1.2	4
2	Properties of Polyethylene Terephthalate (PET) after Thermo-Oxidative Aging. Materials, 2021, 14, 3833.	1.3	39
3	Suitability of Laser Engineered Net Shaping Technology for Inconel 625 Based Parts Repair Process. Materials, 2021, 14, 7302.	1.3	3
4	Characterization of Cobalt-Based Stellite 6 Alloy Coating Fabricated by Laser-Engineered Net Shaping (LENS). Materials, 2021, 14, 7442.	1.3	6
5	Microstructural characterization of laser-cladded NiCrAlY coatings on Inconel 625 Ni-based superalloy and 316L stainless steel. Surface and Coatings Technology, 2020, 387, 125317.	2.2	27
6	Microstructure Evolution of 316L Steel Prepared with the Use of Additive and Conventional Methods and Subjected to Dynamic Loads: A Comparative Study. Materials, 2020, 13, 4893.	1.3	7
7	Microstructure and Properties of Inconel 625 Fabricated Using Two Types of Laser Metal Deposition Methods. Materials, 2020, 13, 5050.	1.3	14
8	Superelastic Behavior of Ti-Nb Alloys Obtained by the Laser Engineered Net Shaping (LENS) Technique. Materials, 2020, 13, 2827.	1.3	9
9	Superelastic Effect in NiTi Alloys Manufactured Using Electron Beam and Focused Laser Rapid Manufacturing Methods. Journal of Materials Engineering and Performance, 2020, 29, 4463-4473.	1.2	28
10	Self-Organized Anodic Oxides on Titanium Alloys Prepared from Glycol- and Glycerol-Based Electrolytes. Materials, 2020, 13, 4743.	1.3	19
11	Structural and Optical Characterization of ZnS Ultrathin Films Prepared by Low-Temperature ALD from Diethylzinc and 1.5-Pentanedithiol after Various Annealing Treatments. Materials, 2019, 12, 3212.	1.3	10
12	The Tribaloy T-800 Coatings Deposited by Laser Engineered Net Shaping (LENSTM). Materials, 2019, 12, 1366.	1.3	19
13	Static and Dynamic Loading Behavior of Ti6Al4V Honeycomb Structures Manufactured by Laser Engineered Net Shaping (LENSTM) Technology. Materials, 2019, 12, 1225.	1.3	46
14	Influence of Manufacturing Technology on the Structure of 80W–20Re Heavy Sinters. Materials, 2019, 12, 3965.	1.3	0
15	Deformation of honeycomb cellular structures manufactured with Laser Engineered Net Shaping (LENS) technology under quasi-static loading: Experimental testing and simulation. Additive Manufacturing, 2019, 25, 307-316.	1.7	46
16	The Microstructure Evolution of a Fe3Al Alloy during the LENS Process. Materials, 2018, 11, 390.	1.3	6
17	The Effect of the Traverse Feed Rate on the Microstructure and Mechanical Properties of Laser Deposited Fe3Al (Zr,B) Intermetallic Alloy. Materials, 2018, 11, 792.	1.3	5
18	The Application of Globular Water-Atomized Iron Powders for Additive Manufacturing by a LENS Technique. Materials, 2018, 11, 843.	1.3	8

#	Article	IF	CITATION
19	Microstructure and mechanical properties of a Fe-28%Al-5%Cr-1%Nb-2%B alloy fabricated by Laser Engineered Net Shaping. Materials Letters, 2017, 196, 87-90.	1.3	20
20	The Effect of Nanometric \hat{l}_{\pm} -Al2O3 Addition on Structure and Mechanical Properties of Feal Alloys Fabricated by Lens Technique. Archives of Metallurgy and Materials, 2017, 62, 1703-1712.	0.6	5
21	The microstructure, mechanical properties and corrosion resistance of 316L stainless steel fabricated using laser engineered net shaping. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 677, 1-10.	2.6	356
22	Characterization of nanoporous anodic aluminum oxide formed on laser pre-treated aluminum. Materials Characterization, 2016, 122, 130-136.	1.9	11
23	Structure and properties of the Fe3Al-type intermetallic alloy fabricated by laser engineered net shaping (LENS). Materials Science & Digineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 650, 374-381.	2.6	40
24	Wire Electrical Discharge Machining Of Feal Intermetallic Sinters Without And With Addition Of Nano-Al2O3 Oxide Ceramic. Archives of Metallurgy and Materials, 2015, 60, 2447-2456.	0.6	2
25	The Structure of FeAl Sinters Fabricated Using Cyclic Loading. Materials, 2015, 8, 575-585.	1.3	4
26	Porous graded FeAl intermetallic foams fabricated by sintering process using NaCl space holders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 636, 407-414.	2.6	48
27	Thin wall tubes with Fe3Al/SS316L graded structure obtained by using laser engineered net shaping technology. Materials & Design, 2014, 63, 766-774.	5.1	89
28	Processing and characterization of graded metal/intermetallic materials: The example of Fe/FeAl intermetallics. Materials & Design, 2011, 32, 2827-2834.	5.1	33