Richard M Breyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/396485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PROSTANOIDRECEPTORS: Subtypes and Signaling. Annual Review of Pharmacology and Toxicology, 2001, 41, 661-690.	4.2	927
2	Pharmacology and signaling of prostaglandin receptors: Multiple roles in inflammation and immune modulation. , 2004, 103, 147-166.		721
3	Salt–sensitive hypertension and reduced fertility in mice lacking the prostaglandin EP2 receptor. Nature Medicine, 1999, 5, 217-220.	15.2	374
4	Neuroprotective Function of the PGE2 EP2 Receptor in Cerebral Ischemia. Journal of Neuroscience, 2004, 24, 257-268.	1.7	351
5	Prostaglandin E receptors and the kidney. American Journal of Physiology - Renal Physiology, 2000, 279, F12-F23.	1.3	233
6	Deletion of the Prostaglandin E2 EP2 Receptor Reduces Oxidative Damage and Amyloid Burden in a Model of Alzheimer's Disease. Journal of Neuroscience, 2005, 25, 10180-10187.	1.7	221
7	G Protein–Coupled Prostanoid Receptors and the Kidney. Annual Review of Physiology, 2001, 63, 579-605.	5.6	218
8	Cancer-associated immunodeficiency and dendritic cell abnormalities mediated by the prostaglandin EP2 receptor. Journal of Clinical Investigation, 2003, 111, 727-735.	3.9	204
9	Opposite effects of cyclooxygenase-1 and -2 activity on the pressor response to angiotensin II. Journal of Clinical Investigation, 2002, 110, 61-69.	3.9	194
10	Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. Nature, 2020, 580, 524-529.	13.7	183
11	Prostaglandin E ₂ constrains systemic inflammation through an innate lymphoid cell–IL-22 axis. Science, 2016, 351, 1333-1338.	6.0	156
12	Knockout of the Murine Prostaglandin EP2 Receptor Impairs Osteoclastogenesis in Vitro*. Endocrinology, 2000, 141, 2054-2061.	1.4	150
13	Neuroprotection by the PGE2 EP2 receptor in permanent focal cerebral ischemia. Annals of Neurology, 2005, 57, 758-761.	2.8	136
14	Differential stem- and progenitor-cell trafficking by prostaglandin E2. Nature, 2013, 495, 365-369.	13.7	132
15	Colon Carcinoma Cell Growth Is Associated with Prostaglandin E2/EP4 Receptor-evoked ERK Activation. Journal of Biological Chemistry, 2004, 279, 29797-29804.	1.6	128
16	Neuronal oxidative damage from activated innate immunity is EP2 receptor-dependent. Journal of Neurochemistry, 2002, 83, 463-470.	2.1	127
17	The prostaglandin E ₂ EP2 receptor accelerates disease progression and inflammation in a model of amyotrophic lateral sclerosis. Annals of Neurology, 2008, 64, 304-314.	2.8	113
18	Opposite effects of cyclooxygenase-1 and -2 activity on the pressor response to angiotensin II. Journal of Clinical Investigation, 2002, 110, 61-69.	3.9	113

#	Article	IF	CITATIONS
19	Microglial EP2 is critical to neurotoxicity from activated cerebral innate immunity. Glia, 2005, 52, 70-77.	2.5	110
20	Macrophage EP4 Deficiency Increases Apoptosis and Suppresses Early Atherosclerosis. Cell Metabolism, 2008, 8, 492-501.	7.2	97
21	Antihypertensive effects of selective prostaglandin E2 receptor subtype 1 targeting. Journal of Clinical Investigation, 2007, 117, 2496-2505.	3.9	94
22	Generation of a conditional allele of the mouse prostaglandin EP4 receptor. Genesis, 2004, 40, 7-14.	0.8	90
23	Targeting Prostaglandin E2 Receptors as an Alternative Strategy to Block Cyclooxygenase-2-dependent Extracellular Matrix-induced Matrix Metalloproteinase-9 Expression by Macrophages. Journal of Biological Chemistry, 2006, 281, 3321-3328.	1.6	89
24	Therapeutic Targets in Prostaglandin E2 Signaling for Neurologic Disease. Current Medicinal Chemistry, 2008, 15, 1863-1869.	1.2	88
25	Prostaglandin receptors: their role in regulating renal function. Current Opinion in Nephrology and Hypertension, 2000, 9, 23-29.	1.0	87
26	Characterization of Murine Vasopressor and Vasodepressor Prostaglandin E ₂ Receptors. Hypertension, 2000, 35, 1129-1134.	1.3	82
27	Membrane-associated PGE synthase-1 (mPGES-1) is coexpressed with both COX-1 and COX-2 in the kidney. Kidney International, 2004, 65, 1205-1213.	2.6	82
28	Inflammatory prostaglandin E ₂ signaling in a mouse model of Alzheimer disease. Annals of Neurology, 2012, 72, 788-798.	2.8	81
29	EP ₂ receptor mediates bronchodilation by PGE ₂ in mice. Journal of Applied Physiology, 2000, 88, 2214-2218.	1.2	79
30	Regulation of renal function by prostaglandin E receptors. Kidney International, 1998, 54, S88-S94.	2.6	78
31	Dysregulated cytokine production in human cystic fibrosis bronchial epithelial cells. Inflammation, 2001, 25, 145-155.	1.7	76
32	In situ hybridization and localization of mRNA for the rabbit prostaglandin EP3 receptor. Kidney International, 1993, 44, 1372-1378.	2.6	71
33	Knockout of the Murine Prostaglandin EP2 Receptor Impairs Osteoclastogenesis in Vitro. Endocrinology, 2000, 141, 2054-2061.	1.4	71
34	EP3 receptor deficiency attenuates pulmonary hypertension through suppression of Rho/TGF-β1 signaling. Journal of Clinical Investigation, 2015, 125, 1228-1242.	3.9	68
35	Peroxisome proliferator-activated receptor-γ activity is associated with renal microvasculature. American Journal of Physiology - Renal Physiology, 2001, 281, F1036-F1046.	1.3	66
36	EP ₂ receptors mediate airway relaxation to substance P, ATP, and PGE ₂ . American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L469-L474.	1.3	66

#	Article	IF	CITATIONS
37	Misoprostol, an anti-ulcer agent and PGE2 receptor agonist, protects against cerebral ischemia. Neuroscience Letters, 2008, 438, 210-215.	1.0	66
38	Urogenital distribution of a mouse membrane-associated prostaglandin E2 synthase. American Journal of Physiology - Renal Physiology, 2001, 281, F1173-F1177.	1.3	63
39	Niacin ameliorates ulcerative colitis via prostaglandin D ₂ â€mediated D prostanoid receptor 1 activation. EMBO Molecular Medicine, 2017, 9, 571-588.	3.3	63
40	Increased dietary NaCl induces renal medullary PGE2 production and natriuresis via the EP2 receptor. American Journal of Physiology - Renal Physiology, 2008, 295, F818-F825.	1.3	60
41	The PGE2 EP3 Receptor Regulates Diet-Induced Adiposity in Male Mice. Endocrinology, 2016, 157, 220-232.	1.4	59
42	PKA regulatory IIα subunit is essential for PGD2-mediated resolution of inflammation. Journal of Experimental Medicine, 2016, 213, 2209-2226.	4.2	55
43	Altered hippocampal longâ€ŧerm synaptic plasticity in mice deficient in the PGE2 EP2 receptor. Journal of Neurochemistry, 2009, 108, 295-304.	2.1	54
44	The Second Extracellular Loop of the Prostaglandin EP3 Receptor Is an Essential Determinant of Ligand Selectivity. Journal of Biological Chemistry, 1997, 272, 13475-13478.	1.6	53
45	The cyclooxygenase-1/mPGES-1/endothelial prostaglandin EP4 receptor pathway constrains myocardial ischemia-reperfusion injury. Nature Communications, 2019, 10, 1888.	5.8	51
46	Contribution of prostaglandin EP ₂ receptors to renal microvascular reactivity in mice. American Journal of Physiology - Renal Physiology, 2002, 283, F415-F422.	1.3	50
47	Inactivation of the E-Prostanoid 3 Receptor Attenuates the Angiotensin II Pressor Response via Decreasing Arterial Contractility. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 3024-3032.	1.1	49
48	Substitution of Charged Amino Acid Residues in Transmembrane Regions 6 and 7 Affect Ligand Binding and Signal Transduction of the Prostaglandin EP3 Receptor. Molecular Pharmacology, 1997, 51, 61-68.	1.0	47
49	Loss of DP1 Aggravates Vascular Remodeling in Pulmonary Arterial Hypertension via mTORC1 Signaling. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 1263-1276.	2.5	47
50	Opposing effects of prostaglandin E 2 receptors EP3 and EP4 on mouse and human β-cell survival and proliferation. Molecular Metabolism, 2017, 6, 548-559.	3.0	45
51	Prostaglandin E ₂ promotes intestinal inflammation via inhibiting microbiota-dependent regulatory T cells. Science Advances, 2021, 7, .	4.7	44
52	Prostaglandin E2 stimulates adaptive IL-22 production and promotes allergic contact dermatitis. Journal of Allergy and Clinical Immunology, 2018, 141, 152-162.	1.5	43
53	A conserved threonine in the second extracellular loop of the human EP2 and EP4 receptors is required for ligand binding. European Journal of Pharmacology, 1998, 357, 73-82.	1.7	41
54	Prostaglandins that increase renin production in response to ACE inhibition are not derived from cyclooxygenase-1. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R638-R646.	0.9	41

#	Article	IF	CITATIONS
55	Prostaglandin E2 receptor EP3 regulates both adipogenesis and lipolysis in mouse white adipose tissue. Journal of Molecular Cell Biology, 2016, 8, 518-529.	1.5	41
56	Structureâ€Function Analyses of Eicosanoid Receptors: Physiologic and Therapeutic Implications. Annals of the New York Academy of Sciences, 2000, 905, 221-231.	1.8	40
57	Microglial EP2 as a New Target to Increase Amyloid β Phagocytosis and Decrease Amyloid β-Induced Damage to Neurons. Brain Pathology, 2005, 15, 134-138.	2.1	37
58	Expression of the prostaglandin F receptor (FP) gene along the mouse genitourinary tract. American Journal of Physiology - Renal Physiology, 2003, 284, F1164-F1170.	1.3	35
59	Characterization of a Rabbit Kidney Prostaglandin F2α Receptor Exhibiting Gi-restricted Signaling That Inhibits Water Absorption in the Collecting Duct. Journal of Biological Chemistry, 2005, 280, 35028-35037.	1.6	32
60	Protection of Hippocampal Neurogenesis from Toll-Like Receptor 4-Dependent Innate Immune Activation by Ablation of Prostaglandin E2 Receptor Subtype EP1 or EP2. American Journal of Pathology, 2009, 174, 2300-2309.	1.9	31
61	Regulation of pancreatic β-cell function and mass dynamics by prostaglandin signaling. Journal of Cell Communication and Signaling, 2017, 11, 105-116.	1.8	31
62	Functional and molecular aspects of prostaglandin E receptors in the cortical collecting duct. Canadian Journal of Physiology and Pharmacology, 1995, 73, 172-179.	0.7	30
63	Prostaglandin E2 modulation of blood pressure homeostasis: Studies in rodent models. Prostaglandins and Other Lipid Mediators, 2011, 96, 10-13.	1.0	26
64	Importance of the Extracellular Domain for Prostaglandin EP2 Receptor Function. Molecular Pharmacology, 1999, 56, 545-551.	1.0	25
65	Cloning and expression of the rabbit prostaglandin EP2 receptor. BMC Pharmacology, 2002, 2, 14.	0.4	22
66	DP1 Activation Reverses Age-Related Hypertension Via NEDD4L-Mediated T-Bet Degradation in T Cells. Circulation, 2020, 141, 655-666.	1.6	20
67	Genomic structure and genitourinary expression of mouse cytosolic prostaglandin E2 synthase gene. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2003, 1634, 15-23.	1.2	19
68	Regulation of Calcium Channels and Exocytosis in Mouse Adrenal Chromaffin Cells by Prostaglandin EP3 Receptors. Molecular Pharmacology, 2011, 79, 987-996.	1.0	19
69	Niacin Promotes Cardiac Healing after Myocardial Infarction through Activation of the Myeloid Prostaglandin D ₂ Receptor Subtype 1. Journal of Pharmacology and Experimental Therapeutics, 2017, 360, 435-444.	1.3	18
70	Excessive EP4 Signaling in Smooth Muscle Cells Induces Abdominal Aortic Aneurysm by Amplifying Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1559-1573.	1.1	17
71	Myeloid Cell Prostaglandin E2 Receptor EP4 Modulates Cytokine Production but Not Atherogenesis in a Mouse Model of Type 1 Diabetes. PLoS ONE, 2016, 11, e0158316.	1.1	17
72	EP1 Disruption Attenuates End-Organ Damage in a Mouse Model of Hypertension. Hypertension, 2012, 60, 1184-1191.	1.3	15

#	Article	IF	CITATIONS
73	Knockout of the Prostaglandin E ₂ Receptor Subtype 3 Promotes Eccentric Cardiac Hypertrophy and Fibrosis in Mice. Journal of Cardiovascular Pharmacology and Therapeutics, 2017, 22, 71-82.	1.0	15
74	Central EP3 (E Prostanoid 3) Receptors Mediate Salt-Sensitive Hypertension and Immune Activation. Hypertension, 2019, 74, 1507-1515.	1.3	15
75	Pharmacological blockade of the EP3 prostaglandin E2 receptor in the setting of type 2 diabetes enhances β-cell proliferation and identity and relieves oxidative damage. Molecular Metabolism, 2021, 54, 101347.	3.0	14
76	Epithelial EP4 plays an essential role in maintaining homeostasis in colon. Scientific Reports, 2019, 9, 15244.	1.6	13
77	Prostanoid receptor with a novel pharmacological profile in human erythroleukemia cells. Biochemical Pharmacology, 1997, 54, 917-926.	2.0	11
78	The effect of the EP3 antagonist DG-041 on male mice with diet-induced obesity. Prostaglandins and Other Lipid Mediators, 2019, 144, 106353.	1.0	11
79	Rat prostaglandin EP3 receptor is highly promiscuous and is the sole prostanoid receptor family member that regulates INSâ€1 (832/3) cell glucoseâ€stimulated insulin secretion. Pharmacology Research and Perspectives, 2021, 9, e00736.	1.1	11
80	Targeted gene disruption of the prostaglandin e2 ep2 receptor. Advances in Experimental Medicine and Biology, 2002, 507, 321-326.	0.8	11
81	Regulation of arterial reactivity by concurrent signaling through the E-prostanoid receptor 3 and angiotensin receptor 1. Vascular Pharmacology, 2016, 84, 47-54.	1.0	6
82	Development of an in vivo active, dual EP1 and EP3 selective antagonist based on a novel acyl sulfonamide bioisostere. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 37-41.	1.0	5
83	Intrarenal distribution of rabbit PKC zeta. Kidney International, 1997, 51, 1831-1837.	2.6	4
84	Evidence for the presence of a critical disulfide bond in the mouse EP3Î ³ receptor. Prostaglandins and Other Lipid Mediators, 2011, 94, 53-58.	1.0	3
85	Eicosanoids and Renal Function. , 2013, , 487-509.		1
86	Targeted gene disruption of the prostaglandin E2 EP2 receptor. Prostaglandins and Other Lipid Mediators, 1999, 59, 86.	1.0	0
87	Eicosanoid Receptors. , 2004, , 6-9.		0
88	EP1 receptors exacerbate mortality in a mouse model of hypertension. FASEB Journal, 2011, 25, 1088.9.	0.2	0
89	Bidirectional regulation of adrenal catecholamine release by prostaglandin E2. FASEB Journal, 2012, 26, 879.6.	0.2	0
90	Prostaglandin E 2 EP3 receptor modulation of insulin secretion in diabetes. FASEB Journal, 2013, 27, 1169.19.	0.2	0

#	Article	IF	CITATIONS
91	Prostanoids. , 2008, , 1004-1005.		0