
Hörður Kristinsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3964807/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of phenolic compounds and antioxidant activity in red and yellow onions and a synergistic utilization of skin extract in modified atmosphere packaging of salmon (<scp><i>Salmo) Tj ETQq1 I</i></scp>	l 0.7 &\$ 314 ı	g B T /Overloc
2	Effect of pH on lipid oxidation of red onion skin extracts treated with washed tilapia (Oreochromisniloticus) muscle model systems. Turkish Journal of Chemistry, 2020, 44, 1528-1538.	1.2	2
3	Stabilization of Fish Oil‣oaded Electrosprayed Capsules with Seaweed and Commercial Natural Antioxidants: Effect on the Oxidative Stability of Capsuleâ€Enriched Mayonnaise. European Journal of Lipid Science and Technology, 2019, 121, 1800396.	1.5	23
4	Food in the bioeconomy. Trends in Food Science and Technology, 2019, 84, 4-6.	15.1	16
5	Structure dependent antioxidant capacity of phlorotannins from Icelandic Fucus vesiculosus by UHPLC-DAD-ECD-QTOFMS. Food Chemistry, 2018, 240, 904-909.	8.2	64
6	Oxidative stability and microstructure of 5% fish-oil-enriched granola bars added natural antioxidants derived from brown algaFucus vesiculosus. European Journal of Lipid Science and Technology, 2017, 119, 1500578.	1.5	22
7	Antioxidant effect of water and acetone extracts ofFucus vesiculosuson oxidative stability of skin care emulsions. European Journal of Lipid Science and Technology, 2017, 119, 1600072.	1.5	11
8	Bioactivity of Cod and Chicken Protein Hydrolysates before and after in vitro Gastrointestinal Digestion. Food Technology and Biotechnology, 2017, 55, 360-367.	2.1	3
9	The ability of <i>in vitro</i> antioxidant assays to predict the efficiency of a cod protein hydrolysate and brown seaweed extract to prevent oxidation in marine food model systems. Journal of the Science of Food and Agriculture, 2016, 96, 2125-2135.	3.5	47
10	Seasonal and geographical variation in chemical composition and lipid stability of Atlantic mackerel (Scomber scombrus) caught in Icelandic waters. Journal of Food Composition and Analysis, 2016, 49, 9-18.	3.9	41
11	Oxidative Stability of Granola Bars Enriched with Multilayered Fish Oil Emulsion in the Presence of Novel Brown Seaweed Based Antioxidants. Journal of Agricultural and Food Chemistry, 2016, 64, 8359-8368.	5.2	17
12	Influence of feeding state and frozen storage temperature on the lipid stability of Atlantic mackerel (<i>Scomber scombrus</i>). International Journal of Food Science and Technology, 2016, 51, 1711-1720.	2.7	41
13	Antioxidant and sensory properties of protein hydrolysate derived from Nile tilapia (Oreochromis) Tj ETQq1 1 0	.784314 rgE 2.8	BT /Qverlock
14	Characterisation and antioxidant evaluation of Icelandic F. vesiculosus extracts in vitro and in fish-oil-enriched milk and mayonnaise. Journal of Functional Foods, 2015, 19, 828-841.	3.4	50
15	Preventive effect of Nile tilapia hydrolysate against oxidative damage of HepG2 cells and DNA mediated by H2O2 and AAPH. Journal of Food Science and Technology, 2015, 52, 6194-6205.	2.8	57
16	Oxidative processes during enzymatic hydrolysis of cod protein and their influence on antioxidant and immunomodulating ability. Food Chemistry, 2014, 142, 201-209.	8.2	24
17	Chemical compositions and muddy flavour/odour of protein hydrolysate from Nile tilapia and broadhead catfish mince and protein isolate. Food Chemistry, 2014, 142, 210-216.	8.2	29
18	Effects of temperature during frozen storage on lipid deterioration of saithe (Pollachius virens) and hoki (Macruronus novaezelandiae) muscles. Food Chemistry, 2014, 156, 234-242.	8.2	36

HöRðUR KRISTINSSON

#	Article	IF	CITATIONS
19	The application of near infrared spectroscopy to study lipid characteristics and deterioration of frozen lean fish muscles. Food Chemistry, 2014, 159, 420-427.	8.2	32
20	Lipid oxidation and fishy odour in protein hydrolysate derived from Nile tilapia (<i>Oreochromis) Tj ETQq0 0 0 r Agriculture, 2014, 94, 219-226.</i>	gBT /Overl 3.5	ock 10 Tf 50 7 14
21	High quality fish protein hydrolysates prepared from by-product material with Fucus vesiculosus extract. Journal of Functional Foods, 2014, 9, 10-17.	3.4	45
22	Effect of thermal treatment and frozen storage on lipid decomposition of light and dark muscles of saithe (Pollachius virens). Food Chemistry, 2014, 164, 476-484.	8.2	23
23	The effect of natural antioxidants on haemoglobin-mediated lipid oxidation during enzymatic hydrolysis of cod protein. Food Chemistry, 2013, 141, 914-919.	8.2	19
24	Effect of pretreatment on lipid oxidation and fishy odour development in protein hydrolysates from the muscle of Indian mackerel. Food Chemistry, 2012, 135, 2474-2482.	8.2	35
25	Effect of pretreatments on chemical compositions of mince from Nile tilapia (Oreochromis niloticus) and fishy odor development in protein hydrolysate. International Aquatic Research, 2012, 4, 7.	1.5	14
26	17β-Hydroxyestra-4,9,11-trien-3-one (Trenbolone) preserves bone mineral density in skeletally mature orchiectomized rats without prostate enlargement. Bone, 2012, 51, 667-673.	2.9	20
27	Antioxidant Capacities of Phlorotannins Extracted from the Brown Algae Fucus vesiculosus. Journal of Agricultural and Food Chemistry, 2012, 60, 5874-5883.	5.2	240
28	Lipid oxidation and fishy odour development in protein hydrolysate from Nile tilapia (Oreochromis) Tj ETQq0 0	0 rgBT/Ov 8.2	erlock 10 Tf 50 91
29	Properties of hydrolysed saithe protein isolates prepared via pH shift process with and without dewatering. LWT - Food Science and Technology, 2011, 44, 1999-2004.	5.2	14
30	Enzymatic Hydrolysis of Blue Whiting (<i>Micromesistius poutassou</i>); Functional and Bioactive Properties. Journal of Food Science, 2011, 76, C14-20.	3.1	54
31	Oxidative stability of mahi mahi red muscle dipped in tilapia protein hydrolysates. Food Chemistry, 2011, 124, 640-645.	8.2	92
32	The influence of additives and drying methods on quality attributes of fish protein powder made from saithe (Pollachius virens). Journal of the Science of Food and Agriculture, 2010, 90, n/a-n/a.	3.5	40
33	Gelation of protein isolates extracted from tilapia light muscle by pH shift processing. Food Chemistry, 2010, 118, 789-798.	8.2	51
34	Inhibition of haemoglobin-mediated lipid oxidation in washed cod muscle and cod protein isolates by Fucus vesiculosus extract and fractions. Food Chemistry, 2010, 123, 321-330.	8.2	67
35	Correlation between astaxanthin amount and a* value in fresh Atlantic salmon (Salmo salar) muscle during different irradiation doses. Food Chemistry, 2010, 120, 121-127.	8.2	44
36	Comparison of Minolta colorimeter and machine vision system in measuring colour of irradiated Atlantic salmon. Journal of the Science of Food and Agriculture, 2009, 89, 728-730.	3.5	62

HöRðUR KRISTINSSON

#	Article	IF	CITATIONS
37	Effect of high pressure processing and cooking treatment on the quality of Atlantic salmon. Food Chemistry, 2009, 116, 828-835.	8.2	148
38	ACE-inhibitory activity of tilapia protein hydrolysates. Food Chemistry, 2009, 117, 582-588.	8.2	131
39	Changes in Red Hake (Urophycis chuss) Muscle Induced by Different Freezing Strategies. Journal of Aquatic Food Product Technology, 2009, 18, 360-369.	1.4	2
40	Optimization of Enzymatic Hydrolysis with Cryotin F on Antioxidative Activities for Shrimp Hydrolysate Using Response Surface Methodology. Preventive Nutrition and Food Science, 2009, 14, 323-328.	1.6	5
41	Color stability of frozen whole tilapia exposed to preâ€mortem treatment with carbon monoxide. Journal of the Science of Food and Agriculture, 2008, 88, 1394-1399.	3.5	11
42	Conformational and rheological changes in catfish myosin during alkali-induced unfolding and refolding. Food Chemistry, 2008, 107, 385-398.	8.2	66
43	Antioxidative Activity of Protein Hydrolysates Prepared from Alkaline-Aided Channel Catfish Protein Isolates. Journal of Agricultural and Food Chemistry, 2008, 56, 7459-7466.	5.2	110
44	Radical Scavenging and Reducing Ability of Tilapia (<i>Oreochromis niloticus</i>) Protein Hydrolysates. Journal of Agricultural and Food Chemistry, 2008, 56, 10359-10367.	5.2	97
45	Antioxidative Efficacy of Alkali-Treated Tilapia Protein Hydrolysates: A Comparative Study of Five Enzymes. Journal of Agricultural and Food Chemistry, 2008, 56, 1434-1441.	5.2	97
46	Structural and foaming properties of egg albumen subjected to different pH-treatments in the presence of calcium ions. Food Research International, 2007, 40, 668-678.	6.2	44
47	Effects of Fish Heme Protein Structure and Lipid Substrate Composition on Hemoglobin-Mediated Lipid Oxidation. Journal of Agricultural and Food Chemistry, 2007, 55, 3643-3654.	5.2	34
48	Conformational and Rheological Changes in Catfish Myosin as Affected by Different Acids during Acid-Induced Unfolding and Refolding. Journal of Agricultural and Food Chemistry, 2007, 55, 4144-4153.	5.2	27
49	Angiotensin converting enzyme inhibition of fish protein hydrolysates prepared from alkaline-aided channel catfish protein isolate. Journal of the Science of Food and Agriculture, 2007, 87, 2353-2357.	3.5	57
50	Effect of Filtered Wood Smoke Treatment on Chemical and Microbial Changes in Mahi Mahi Fillets. Journal of Food Science, 2007, 72, C016-C024.	3.1	14
51	Recovery and Properties of Muscle Proteins Extracted from Tilapia (Oreochromis niloticus) Light Muscle by pH Shift Processing. Journal of Food Science, 2006, 71, E132-E141.	3.1	69
52	Properties of Tilapia Carboxy- and Oxyhemoglobin at Postmortem pH. Journal of Agricultural and Food Chemistry, 2005, 53, 3643-3649.	5.2	16
53	Evaluation of Color Parameters in a Machine Vision Analysis of Carbon Monoxide-Treated Fish—Part I. Journal of Aquatic Food Product Technology, 2005, 14, 5-24.	1.4	30
54	A Comparative Study between Acid-and Alkali-aided Processing and Surimi Processing for the Recovery of Proteins from Channel Catfish Muscle. Journal of Food Science, 2005, 70, C298-C306.	3.1	151

#	Article	IF	CITATIONS
55	The Effect of Acid and Alkali Unfolding and Subsequent Refolding on the Pro-oxidative Activity of Trout Hemoglobin. Journal of Agricultural and Food Chemistry, 2004, 52, 5482-5490.	5.2	54
56	Hemoglobin-Mediated Oxidation of Washed Minced Cod Muscle Phospholipids:Â Effect of pH and Hemoglobin Source. Journal of Agricultural and Food Chemistry, 2004, 52, 4444-4451.	5.2	88
57	Changes in Trout Hemoglobin Conformations and Solubility after Exposure to Acid and Alkali pH. Journal of Agricultural and Food Chemistry, 2004, 52, 3633-3643.	5.2	69
58	Effect of Low and High pH Treatment on the Functional Properties of Cod Muscle Proteins. Journal of Agricultural and Food Chemistry, 2003, 51, 5103-5110.	5.2	132
59	Changes in Conformation and Subunit Assembly of Cod Myosin at Low and High pH and after Subsequent Refolding. Journal of Agricultural and Food Chemistry, 2003, 51, 7187-7196.	5.2	191
60	Acid-Induced Unfolding of Flounder Hemoglobin:  Evidence for a Molten Globular State with Enhanced Pro-oxidative Activity. Journal of Agricultural and Food Chemistry, 2002, 50, 7669-7676.	5.2	77
61	EVALUATION OF DIFFERENT METHODS TO ISOLATE COD (GADUS MORHUA) MUSCLE MYOSIN. Journal of Food Biochemistry, 2001, 25, 249-256.	2.9	12
62	HYDROLYSIS OF SALMON MUSCLE PROTEINS BY AN ENZYME MIXTURE EXTRACTED FROM ATLANTIC SALMON (SALMO SALAR) PYLORIC CAECA. Journal of Food Biochemistry, 2000, 24, 177-187.	2.9	33
63	Biochemical and Functional Properties of Atlantic Salmon (Salmo salar) Muscle Proteins Hydrolyzed with Various Alkaline Proteases. Journal of Agricultural and Food Chemistry, 2000, 48, 657-666.	5.2	370