
Hörður Kristinsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3964807/publications.pdf Version: 2024-02-01

8.2

66

#	Article	IF	CITATIONS
1	Biochemical and Functional Properties of Atlantic Salmon (Salmo salar) Muscle Proteins Hydrolyzed with Various Alkaline Proteases. Journal of Agricultural and Food Chemistry, 2000, 48, 657-666.	5.2	370
2	Antioxidant Capacities of Phlorotannins Extracted from the Brown Algae Fucus vesiculosus. Journal of Agricultural and Food Chemistry, 2012, 60, 5874-5883.	5.2	240
3	Changes in Conformation and Subunit Assembly of Cod Myosin at Low and High pH and after Subsequent Refolding. Journal of Agricultural and Food Chemistry, 2003, 51, 7187-7196.	5.2	191
4	A Comparative Study between Acid-and Alkali-aided Processing and Surimi Processing for the Recovery of Proteins from Channel Catfish Muscle. Journal of Food Science, 2005, 70, C298-C306.	3.1	151
5	Effect of high pressure processing and cooking treatment on the quality of Atlantic salmon. Food Chemistry, 2009, 116, 828-835.	8.2	148
6	Effect of Low and High pH Treatment on the Functional Properties of Cod Muscle Proteins. Journal of Agricultural and Food Chemistry, 2003, 51, 5103-5110.	5.2	132
7	ACE-inhibitory activity of tilapia protein hydrolysates. Food Chemistry, 2009, 117, 582-588.	8.2	131
8	Antioxidative Activity of Protein Hydrolysates Prepared from Alkaline-Aided Channel Catfish Protein Isolates. Journal of Agricultural and Food Chemistry, 2008, 56, 7459-7466.	5.2	110
9	Radical Scavenging and Reducing Ability of Tilapia (<i>Oreochromis niloticus</i>) Protein Hydrolysates. Journal of Agricultural and Food Chemistry, 2008, 56, 10359-10367.	5.2	97
10	Antioxidative Efficacy of Alkali-Treated Tilapia Protein Hydrolysates: A Comparative Study of Five Enzymes. Journal of Agricultural and Food Chemistry, 2008, 56, 1434-1441.	5.2	97
11	Oxidative stability of mahi mahi red muscle dipped in tilapia protein hydrolysates. Food Chemistry, 2011, 124, 640-645.	8.2	92
12	Lipid oxidation and fishy odour development in protein hydrolysate from Nile tilapia (Oreochromis) Tj ETQq0 0 0	rgBT/Over 8.2	rlock 10 Tf 50
13	Hemoglobin-Mediated Oxidation of Washed Minced Cod Muscle Phospholipids:Â Effect of pH and Hemoglobin Source. Journal of Agricultural and Food Chemistry, 2004, 52, 4444-4451.	5.2	88
14	Acid-Induced Unfolding of Flounder Hemoglobin:  Evidence for a Molten Globular State with Enhanced Pro-oxidative Activity. Journal of Agricultural and Food Chemistry, 2002, 50, 7669-7676.	5.2	77
15	Changes in Trout Hemoglobin Conformations and Solubility after Exposure to Acid and Alkali pH. Journal of Agricultural and Food Chemistry, 2004, 52, 3633-3643.	5.2	69

16	Recovery and Properties of Muscle Proteins Extracted from Tilapia (Oreochromis niloticus) Light Muscle by pH Shift Processing. Journal of Food Science, 2006, 71, E132-E141.	3.1	69
17	Inhibition of haemoglobin-mediated lipid oxidation in washed cod muscle and cod protein isolates by Fucus vesiculosus extract and fractions. Food Chemistry, 2010, 123, 321-330.	8.2	67

¹⁸ Conformational and rheological changes in catfish myosin during alkali-induced unfolding and refolding. Food Chemistry, 2008, 107, 385-398.

#	Article	IF	CITATIONS
19	Structure dependent antioxidant capacity of phlorotannins from Icelandic Fucus vesiculosus by UHPLC-DAD-ECD-QTOFMS. Food Chemistry, 2018, 240, 904-909.	8.2	64
20	Comparison of Minolta colorimeter and machine vision system in measuring colour of irradiated Atlantic salmon. Journal of the Science of Food and Agriculture, 2009, 89, 728-730.	3.5	62
21	Angiotensin converting enzyme inhibition of fish protein hydrolysates prepared from alkaline-aided channel catfish protein isolate. Journal of the Science of Food and Agriculture, 2007, 87, 2353-2357.	3.5	57
22	Preventive effect of Nile tilapia hydrolysate against oxidative damage of HepG2 cells and DNA mediated by H2O2 and AAPH. Journal of Food Science and Technology, 2015, 52, 6194-6205.	2.8	57
23	The Effect of Acid and Alkali Unfolding and Subsequent Refolding on the Pro-oxidative Activity of Trout Hemoglobin. Journal of Agricultural and Food Chemistry, 2004, 52, 5482-5490.	5.2	54
24	Enzymatic Hydrolysis of Blue Whiting (<i>Micromesistius poutassou</i>); Functional and Bioactive Properties. Journal of Food Science, 2011, 76, C14-20.	3.1	54
25	Gelation of protein isolates extracted from tilapia light muscle by pH shift processing. Food Chemistry, 2010, 118, 789-798.	8.2	51
26	Characterisation and antioxidant evaluation of Icelandic F. vesiculosus extracts in vitro and in fish-oil-enriched milk and mayonnaise. Journal of Functional Foods, 2015, 19, 828-841.	3.4	50
27	Antioxidant and sensory properties of protein hydrolysate derived from Nile tilapia (Oreochromis) Tj ETQq1 1 0.	784314 rg 2.8	BT 49verlock
28	The ability of <i>in vitro</i> antioxidant assays to predict the efficiency of a cod protein hydrolysate and brown seaweed extract to prevent oxidation in marine food model systems. Journal of the Science of Food and Agriculture, 2016, 96, 2125-2135.	3.5	47
29	High quality fish protein hydrolysates prepared from by-product material with Fucus vesiculosus extract. Journal of Functional Foods, 2014, 9, 10-17.	3.4	45
30	Structural and foaming properties of egg albumen subjected to different pH-treatments in the presence of calcium ions. Food Research International, 2007, 40, 668-678.	6.2	44
31	Correlation between astaxanthin amount and a* value in fresh Atlantic salmon (Salmo salar) muscle during different irradiation doses. Food Chemistry, 2010, 120, 121-127.	8.2	44
32	Seasonal and geographical variation in chemical composition and lipid stability of Atlantic mackerel (Scomber scombrus) caught in Icelandic waters. Journal of Food Composition and Analysis, 2016, 49, 9-18.	3.9	41
33	Influence of feeding state and frozen storage temperature on the lipid stability of Atlantic mackerel (<i>Scomber scombrus</i>). International Journal of Food Science and Technology, 2016, 51, 1711-1720.	2.7	41
34	The influence of additives and drying methods on quality attributes of fish protein powder made from saithe (Pollachius virens). Journal of the Science of Food and Agriculture, 2010, 90, n/a-n/a.	3.5	40
35	Effects of temperature during frozen storage on lipid deterioration of saithe (Pollachius virens) and hoki (Macruronus novaezelandiae) muscles. Food Chemistry, 2014, 156, 234-242.	8.2	36
36	Effect of pretreatment on lipid oxidation and fishy odour development in protein hydrolysates from the muscle of Indian mackerel. Food Chemistry, 2012, 135, 2474-2482.	8.2	35

#	Article	IF	CITATIONS
37	Effects of Fish Heme Protein Structure and Lipid Substrate Composition on Hemoglobin-Mediated Lipid Oxidation. Journal of Agricultural and Food Chemistry, 2007, 55, 3643-3654.	5.2	34
38	HYDROLYSIS OF SALMON MUSCLE PROTEINS BY AN ENZYME MIXTURE EXTRACTED FROM ATLANTIC SALMON (SALMO SALAR) PYLORIC CAECA. Journal of Food Biochemistry, 2000, 24, 177-187.	2.9	33
39	The application of near infrared spectroscopy to study lipid characteristics and deterioration of frozen lean fish muscles. Food Chemistry, 2014, 159, 420-427.	8.2	32
40	Evaluation of Color Parameters in a Machine Vision Analysis of Carbon Monoxide-Treated Fish—Part I. Journal of Aquatic Food Product Technology, 2005, 14, 5-24.	1.4	30
41	Chemical compositions and muddy flavour/odour of protein hydrolysate from Nile tilapia and broadhead catfish mince and protein isolate. Food Chemistry, 2014, 142, 210-216.	8.2	29
42	Conformational and Rheological Changes in Catfish Myosin as Affected by Different Acids during Acid-Induced Unfolding and Refolding. Journal of Agricultural and Food Chemistry, 2007, 55, 4144-4153.	5.2	27
43	Oxidative processes during enzymatic hydrolysis of cod protein and their influence on antioxidant and immunomodulating ability. Food Chemistry, 2014, 142, 201-209.	8.2	24
44	Effect of thermal treatment and frozen storage on lipid decomposition of light and dark muscles of saithe (Pollachius virens). Food Chemistry, 2014, 164, 476-484.	8.2	23
45	Stabilization of Fish Oil‣oaded Electrosprayed Capsules with Seaweed and Commercial Natural Antioxidants: Effect on the Oxidative Stability of Capsuleâ€Enriched Mayonnaise. European Journal of Lipid Science and Technology, 2019, 121, 1800396.	1.5	23
46	Oxidative stability and microstructure of 5% fish-oil-enriched granola bars added natural antioxidants derived from brown algaFucus vesiculosus. European Journal of Lipid Science and Technology, 2017, 119, 1500578.	1.5	22
47	17β-Hydroxyestra-4,9,11-trien-3-one (Trenbolone) preserves bone mineral density in skeletally mature orchiectomized rats without prostate enlargement. Bone, 2012, 51, 667-673.	2.9	20
48	The effect of natural antioxidants on haemoglobin-mediated lipid oxidation during enzymatic hydrolysis of cod protein. Food Chemistry, 2013, 141, 914-919.	8.2	19
49	Oxidative Stability of Granola Bars Enriched with Multilayered Fish Oil Emulsion in the Presence of Novel Brown Seaweed Based Antioxidants. Journal of Agricultural and Food Chemistry, 2016, 64, 8359-8368.	5.2	17
50	Properties of Tilapia Carboxy- and Oxyhemoglobin at Postmortem pH. Journal of Agricultural and Food Chemistry, 2005, 53, 3643-3649.	5.2	16
51	Food in the bioeconomy. Trends in Food Science and Technology, 2019, 84, 4-6.	15.1	16
52	Effect of Filtered Wood Smoke Treatment on Chemical and Microbial Changes in Mahi Mahi Fillets. Journal of Food Science, 2007, 72, C016-C024.	3.1	14
53	Properties of hydrolysed saithe protein isolates prepared via pH shift process with and without dewatering. LWT - Food Science and Technology, 2011, 44, 1999-2004.	5.2	14
54	Effect of pretreatments on chemical compositions of mince from Nile tilapia (Oreochromis niloticus) and fishy odor development in protein hydrolysate. International Aquatic Research, 2012, 4, 7.	1.5	14

#	Article	IF	CITATIONS
55	Lipid oxidation and fishy odour in protein hydrolysate derived from Nile tilapia (<i>Oreochromis) Tj ETQq1 1 0.784</i>	4314 rgBT 3.5	/Overlock
	Agriculture, 2014, 94, 219-226.		
56	EVALUATION OF DIFFERENT METHODS TO ISOLATE COD (GADUS MORHUA) MUSCLE MYOSIN. Journal of Food Biochemistry, 2001, 25, 249-256.	2.9	12
57	Color stability of frozen whole tilapia exposed to preâ€mortem treatment with carbon monoxide. Journal of the Science of Food and Agriculture, 2008, 88, 1394-1399.	3.5	11
58	Antioxidant effect of water and acetone extracts ofFucus vesiculosuson oxidative stability of skin care emulsions. European Journal of Lipid Science and Technology, 2017, 119, 1600072.	1.5	11
59	Investigation of phenolic compounds and antioxidant activity in red and yellow onions and a synergistic utilization of skin extract in modified atmosphere packaging of salmon (<scp><i>Salmo) Tj ETQq1 1 0</i></scp>	.7 &4 314 r	g&T /Overlo
60	Optimization of Enzymatic Hydrolysis with Cryotin F on Antioxidative Activities for Shrimp Hydrolysate Using Response Surface Methodology. Preventive Nutrition and Food Science, 2009, 14, 323-328.	1.6	5
61	Bioactivity of Cod and Chicken Protein Hydrolysates before and after in vitro Gastrointestinal Digestion. Food Technology and Biotechnology, 2017, 55, 360-367.	2.1	3
62	Changes in Red Hake (Urophycis chuss) Muscle Induced by Different Freezing Strategies. Journal of Aquatic Food Product Technology, 2009, 18, 360-369.	1.4	2
63	Effect of pH on lipid oxidation of red onion skin extracts treated with washed tilapia (Oreochromisniloticus) muscle model systems. Turkish Journal of Chemistry, 2020, 44, 1528-1538.	1.2	2