Marlies A Lambrecht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3964504/publications.pdf

Version: 2024-02-01

26 papers 684 citations

16 h-index 25 g-index

27 all docs

27 docs citations

times ranked

27

731 citing authors

#	Article	IF	CITATIONS
1	Formation and reshuffling of disulfide bonds in bovine serum albumin demonstrated using tandem mass spectrometry with collision-induced and electron-transfer dissociation. Scientific Reports, 2015, 5, 12210.	3.3	66
2	Heat-induced network formation between proteins of different sources in model systems, wheat-based noodles and pound cakes. Food Hydrocolloids, 2018, 79, 352-370.	10.7	57
3	Conditions Governing Food Protein Amyloid Fibril Formation. Part II: Milk and Legume Proteins. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1277-1291.	11.7	57
4	Prediction of heat-induced polymerization of different globular food proteins in mixtures with wheat gluten. Food Chemistry, 2017, 221, 1158-1167.	8.2	51
5	The impact of alkaline conditions on storage proteins of cereals and pseudo-cereals. Current Opinion in Food Science, 2019, 25, 98-103.	8.0	50
6	Denaturation and covalent network formation of wheat gluten, globular proteins and mixtures thereof in aqueous ethanol and water. Food Hydrocolloids, 2016, 57, 122-131.	10.7	45
7	Conditions Governing Food Protein Amyloid Fibril Formation—Part I: Egg and Cereal Proteins. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1256-1276.	11.7	43
8	Processing Induced Changes in Food Proteins: Amyloid Formation during Boiling of Hen Egg White. Biomacromolecules, 2020, 21, 2218-2228.	5.4	34
9	Flour from wheat cultivars of varying hardness produces semi-sweet biscuits with varying textural and structural properties. LWT - Food Science and Technology, 2013, 53, 452-457.	5.2	29
10	The Role of Wheat and Egg Constituents in the Formation of a Covalent and Nonâ€covalent Protein Network in Fresh and Cooked Egg Noodles. Journal of Food Science, 2017, 82, 24-35.	3.1	26
11	Identification of lanthionine and lysinoalanine in heat-treated wheat gliadin and bovine serum albumin using tandem mass spectrometry with higher-energy collisional dissociation. Amino Acids, 2016, 48, 959-971.	2.7	25
12	Food protein network formation and gelation induced by conductive or microwave heating: A focus on hen egg white. Innovative Food Science and Emerging Technologies, 2020, 66, 102484.	5.6	23
13	The impact of protein characteristics on the protein network in and properties of fresh and cooked wheat-based noodles. Journal of Cereal Science, 2017, 75, 234-242.	3.7	21
14	Influence of hydrophobic interfaces and shear on ovalbumin amyloid-like fibril formation in oil-in-water emulsions. Food Hydrocolloids, 2021, 111, 106327.	10.7	20
15	Impact of extraction and elution media on non-size effects in size exclusion chromatography of proteins. Journal of Chromatography A, 2015, 1415, 100-107.	3.7	18
16	Heating Wheat Gluten Promotes the Formation of Amyloid-like Fibrils. ACS Omega, 2021, 6, 1823-1833.	3. 5	18
17	Hydrothermal Treatments Cause Wheat Gluten-Derived Peptides to Form Amyloid-like Fibrils. Journal of Agricultural and Food Chemistry, 2021, 69, 1963-1974.	5. 2	16
18	Microscopic investigation of the formation of a thermoset wheat gluten network in a model system relevant for bread making. International Journal of Food Science and Technology, 2020, 55, 891-898.	2.7	15

#	Article	lF	CITATIONS
19	Drying mode and hydrothermal treatment conditions govern the formation of amyloid-like protein fibrils in solutions of dried hen egg white. Food Hydrocolloids, 2021, 112, 106276.	10.7	15
20	Impact of hydrothermal treatment on denaturation and aggregation of water-extractable quinoa (Chenopodium quinoa Willd.) protein. Food Hydrocolloids, 2021, 115, 106611.	10.7	15
21	Thermo-reversible inhibition makes aqualysin 1 from Thermus aquaticus a potent tool for studying the contribution of the wheat gluten network to the crumb texture of fresh bread. Food Chemistry, 2018, 264, 118-125.	8.2	14
22	Impact of Puroindolines on Semisweet Biscuit Quality: A Fractionation–Reconstitution Approach. Cereal Chemistry, 2013, 90, 564-571.	2.2	7
23	Impact of aqualysin 1 peptidase from Thermus aquaticus on molecular scale changes in the wheat gluten network during bread baking. Food Chemistry, 2019, 295, 599-606.	8.2	7
24	Heat-induced denaturation and aggregation of protein in quinoa (Chenopodium quinoa Willd.) seeds and whole meal. Food Chemistry, 2022, 372, 131330.	8.2	7
25	Heatâ€sensitive inhibition of aqualysin 1 by protein containing wheat, maize, and barley extracts. Cereal Chemistry, 2020, 97, 1204-1215.	2.2	0
26	Impact of wheat gluten on the denaturation of egg white and whey proteins. Cereal Chemistry, 0, , .	2.2	0