
Sylvia Heink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3964493/publications.pdf Version: 2024-02-01

SVIVIA HEINK

#	Article	lF	CITATIONS
1	IL-6 signaling in macrophages is required for immunotherapy-driven regression of tumors. , 2021, 9, e002460.		10
2	Cutting Edge: IL-6–Driven Immune Dysregulation Is Strictly Dependent on IL-6R α-Chain Expression. Journal of Immunology, 2020, 204, 747-751.	0.4	5
3	Salt generates antiinflammatory Th17 cells but amplifies pathogenicity in proinflammatory cytokine microenvironments. Journal of Clinical Investigation, 2020, 130, 4587-4600.	3.9	42
4	Cell-type-specific profiling of brain mitochondria reveals functional and molecular diversity. Nature Neuroscience, 2019, 22, 1731-1742.	7.1	181
5	Interleukin-6: designing specific therapeutics for a complex cytokine. Nature Reviews Drug Discovery, 2018, 17, 395-412.	21.5	440
6	Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic TH17 cells. Nature Immunology, 2017, 18, 74-85.	7.0	311
7	Neutralizing IL-17 protects the optic nerve from autoimmune pathology and prevents retinal nerve fiber layer atrophy during experimental autoimmune encephalomyelitis. Journal of Autoimmunity, 2015, 56, 34-44.	3.0	46
8	Towards the Generation of B-Cell Receptor Retrogenic Mice. PLoS ONE, 2014, 9, e109199.	1.1	12
9	Continuous T Cell Receptor Signals Maintain a Functional Regulatory T Cell Pool. Immunity, 2014, 41, 722-736.	6.6	262
10	IL-27 and IL-12 oppose pro-inflammatory IL-23 in CD4+ T cells by inducing Blimp1. Nature Communications, 2014, 5, 3770.	5.8	90
11	α4-integrins control viral meningoencephalitis through differential recruitment of T helper cell subsets. Acta Neuropathologica Communications, 2014, 2, 27.	2.4	25
12	IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis. Journal of Clinical Investigation, 2013, 123, 247-260.	3.9	199
13	Antigen Targeting to Plasmacytoid Dendritic Cells via Siglec-H Inhibits Th Cell-Dependent Autoimmunity. Journal of Immunology, 2011, 187, 6346-6356.	0.4	95
14	PI3KÎ ³ deficiency delays the onset of experimental autoimmune encephalomyelitis and ameliorates its clinical outcome. European Journal of Immunology, 2011, 41, 833-844.	1.6	27
15	Th17 lymphocytes traffic to the central nervous system independently of α4 integrin expression during EAE. Journal of Experimental Medicine, 2011, 208, 2465-2476.	4.2	241
16	The receptor tyrosine kinase c-Kit controls IL-33 receptor signaling in mast cells. Blood, 2010, 115, 3899-3906.	0.6	107
17	Î ³ δT Cells Enhance Autoimmunity by Restraining Regulatory T Cell Responses via an Interleukin-23-Dependent Mechanism. Immunity, 2010, 33, 351-363.	6.6	246
18	A Th17â€like developmental process leads to CD8 ⁺ Tc17 cells with reduced cytotoxic activity. European Journal of Immunology, 2009, 39, 1716-1725.	1.6	203

Sylvia Heink

#	Article	IF	CITATIONS
19	The development of inflammatory TH-17 cells requires interferon-regulatory factor 4. Nature Immunology, 2007, 8, 958-966.	7.0	620
20	The proteasome maturation protein POMP facilitates major steps of 20S proteasome formation at the endoplasmic reticulum. EMBO Reports, 2007, 8, 1170-1175.	2.0	87
21	Tumor Cell Lines Expressing the Proteasome Subunit Isoform LMP7E1 Exhibit Immunoproteasome Deficiency. Cancer Research, 2006, 66, 649-652.	0.4	30
22	Interferon-gamma, the functional plasticity of the ubiquitin-proteasome system, and MHC class I antigen processing. Immunological Reviews, 2005, 207, 19-30.	2.8	223
23	From The Cover: IFN-Â-induced immune adaptation of the proteasome system is an accelerated and transient response. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9241-9246.	3.3	261
24	Human immunodeficiency virus-1 Tat protein interacts with distinct proteasomal $\hat{l}\pm$ and \hat{l}^2 subunits. FEBS Letters, 2003, 553, 200-204.	1.3	72