Tamer Sinmazcelik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3964462/publications.pdf

Version: 2024-02-01

361413 233421 2,142 66 20 45 citations h-index g-index papers 67 67 67 1951 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A review: Fibre metal laminates, background, bonding types and applied test methods. Materials & Design, 2011, 32, 3671-3685.	5.1	731
2	Laser welding of Ti6Al4V titanium alloys. Journal of Materials Processing Technology, 2009, 209, 3705-3713.	6.3	323
3	Effects of double passes of the tool on friction stir welding of polyethylene. Journal of Materials Science, 2005, 40, 3313-3316.	3.7	101
4	Characterization of the drilling alumina ceramic using Nd:YAG pulsed laser. Journal of Materials Processing Technology, 2009, 2008-2014.	6.3	90
5	Erosive wear behaviour of carbon fibre/polyetherimide composites under low particle speed. Materials & Design, 2007, 28, 351-355.	5.1	64
6	Effects of hydrothermal aging on glass–fiber/polyetherimide (PEI) composites. Journal of Materials Science, 2010, 45, 399-404.	3.7	44
7	Erosive wear behaviour of polyphenylenesulphide (PPS) composites. Materials & Design, 2007, 28, 2471-2477.	5.1	42
8	Residual mechanical properties of carbon/polyphenylenesulphide composites after solid particle erosion. Materials & Design, 2008, 29, 1419-1426.	5.1	37
9	Natural weathering effects on the mechanical and surface properties of polyphenylene sulphide (PPS) composites. Materials & Design, 2006, 27, 270-277.	5.1	31
10	Internal damage investigation of the impacted glass/glass+aramid fiber reinforced composites by micro-computerized tomography. NDT and E International, 2012, 51, 1-7.	3.7	30
11	Effect of Fiber Orientation on Scratch Resistance in Unidirectional Carbon-Fiber-Reinforced Polymer Matrix Composites. Journal of Reinforced Plastics and Composites, 2010, 29, 1476-1490.	3.1	28
12	Effect of heat treatment on erosive wear behaviour of Ti6Al4V alloy. Materials Science and Technology, 2013, 29, 1088-1094.	1.6	28
13	Effects of cutting temperature and process optimization in drilling of GFRP composites. Journal of Composite Materials, 2021, 55, 235-249.	2.4	28
14	Laser parameters optimization of surface treating of Al 6082-T6 with Taguchi method. Optics and Laser Technology, 2019, 120, 105714.	4.6	27
15	Impact–fatigue behaviour of unidirectional carbon fibre reinforced polyetherimide (PEI) composites. Journal of Materials Science, 2006, 41, 6237-6244.	3.7	26
16	On the life time prediction of repeatedly impacted thermoplastic matrix composites. Materials & Design, 2009, 30, 145-153.	5.1	26
17	Erodent size effect on the erosion of polyphenylene sulfide composite. Polymer Composites, 2010, 31, 985-994.	4.6	26
18	The effect of natural weathering on the mechanical, morphological and thermal properties of high impact polystyrene (HIPS). Materials & Design, 2007, 28, 2303-2309.	5.1	25

#	Article	IF	Citations
19	Fracture morphology and deformation characteristics of repeatedly impacted thermoplastic matrix composites. Materials & Design, 2009, 30, 628-634.	5.1	25
20	Instrumented indentation and scratch testing evaluation of tribological properties of tin-based bearing materials. Materials & Design, 2010, 31, 2707-2715.	5.1	22
21	The influence of annealing on the crystallization and tribological behavior of MWNT/PEEK nanocomposites. Polymer Composites, 2011, 32, 1766-1771.	4.6	22
22	Solid Particle Erosive Wear Behavior of Glass Mat Reinforced PPS Composites: Influence of Erodent Particle Size, Pressure, Particle Impingement Angle, and Velocity. Advances in Polymer Technology, 2013, 32, .	1.7	22
23	Influence of Annealing on the Performance of Short Glass Fiber-reinforced Polyphenylene Sulfide (PPS) Composites. Journal of Composite Materials, 2005, 39, 21-33.	2.4	20
24	Surface, Subsurface and Tribological Properties of Ti6Al4V Alloy Shot Peened under Different Parameters. Materials, 2020, 13, 4363.	2.9	19
25	Possible use of volcanic ash as a filler in polyphenylene sulfide composites: Thermal, mechanical, and erosive wear properties. Polymer Composites, 2014, 35, 1826-1833.	4.6	18
26	Mathematical modelling of laser ablation of random oriented short glass fiber reinforced Polyphenylene sulphide (PPS) polymer composite. Optics and Laser Technology, 2019, 115, 481-486.	4.6	17
27	Evaluation of Cyanoacrylate Augmentation of Transpedicular Screw Pullout Strength. Journal of Spinal Disorders and Techniques, 2005, 18, 511-514.	1.9	16
28	Erosive Wear Studies of Glass fiber- and Carbon Fiber-reinforced Polyetheretherketone Composites at Low Particle Speed. Journal of Thermoplastic Composite Materials, 2011, 24, 333-350.	4.2	16
29	Comparison of the mechanical, thermomechanical, thermal, and morphological properties of pumice and calcium carbonateâ€filled poly(phenylene sulfide) composites. Polymer Composites, 2016, 37, 3160-3166.	4.6	16
30	Effects of 3D printed surface texture on erosive wear. Tribology International, 2020, 144, 106110.	5.9	16
31	The effect of TIO2 filler content on the mechanical, thermal, and tribological properties of TiO2 /PPS composites. Polymer Composites, 2013, 34, 1591-1599.	4.6	13
32	Thermal cycles effects on interlaminar shear strength (ILSS) and impact behaviour of carbon/PEI composites. Journal of Materials Science, 2006, 41, 1233-1241.	3.7	12
33	Geometric parameters and chemical corrosion effects on bearing strength of polyphenylenesulphide (PPS) composites. Materials & Design, 2007, 28, 1695-1698.	5.1	12
34	Fracture characteristics of high impact polystyrene under impact fatigue loadings. Journal of Materials Science, 2009, 44, 4308-4314.	3.7	11
35	Modification of polyolefins with silicone copolymers. II. Thermal, mechanical, and tribological behavior of PP and HDPE blended with silicone copolymers. Journal of Applied Polymer Science, 2002, 84, 535-540.	2.6	10
36	Effects of Geometric Parameters on the Pin-bearing Strength of Glass/Polyphenylenesulphide Composites. Journal of Composite Materials, 2009, 43, 2239-2253.	2.4	10

#	Article	IF	Citations
37	Effect of fiber orientation on viscoelastic properties of polymer matrix composites subjected to thermal cycles. Polymer Composites, 2010, 31, 411-416.	4.6	10
38	A Study on the Derivation of Parametric Cutting Force Equations in Drilling of GFRP Composites. Strojniski Vestnik/Journal of Mechanical Engineering, 2013, 59, 97-105.	1.1	10
39	The Effects of Thermal Cycles on the Impact Fatigue Properties of Thermoplastic Matrix Composites. Applied Composite Materials, 2008, 15, 99-113.	2.5	9
40	The influence of different circular hole perforations on interlaminar shear strength of a novel fiber metal laminates. Polymer Composites, 2016, 37, 963-973.	4.6	9
41	Effect of mussel shell reinforcement on mechanical and tribological behavior of polyphenylene sulfide composites. Journal of Thermoplastic Composite Materials, 2022, 35, 1279-1302.	4.2	9
42	Heat treatment effect on solid particle erosion properties of polyphenylene sulfide composites reinforced with silane coupled volcanic ash particles. Polymer Composites, 2018, 39, 1638-1646.	4.6	8
43	Investigation of erosive wear behaviors of AA6082-T6 aluminum alloy. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2020, 234, 520-530.	1.1	7
44	Mathematical modeling of heat distribution on carbon fiber Poly(ether-ether-ketone) (PEEK) composite during laser ablation. Optics and Laser Technology, 2020, 127, 106190.	4.6	7
45	Dry Sliding Wear Behaviour of Shot Peened TI6AL4V Alloys at Different Peening Times. Acta Physica Polonica A, 2018, 134, 349-353.	0.5	7
46	Detecting Impact Damages in an Aramid/Glass Fiber Reinforced Hybrid Composite with Micro Tomography. Advanced Materials Research, 2012, 445, 9-14.	0.3	6
47	Effect of mixed size particles reinforcing on the thermal and dynamic mechanical properties of <scp>A</scp> ₂ <scp>O</scp> ₃ / <scp>PPS</scp> composites. Polymer Composites, 2016, 37, 3219-3227.	4.6	6
48	Heat treatment effect on thermal and thermomechanical properties of polyphenylene sulfide composites reinforced with silaneâ€treated volcanic ash particles. Polymer Composites, 2018, 39, 1612-1619.	4.6	6
49	The Effects of Grit Size and Blasting Pressure on the Surface Properties of Grit Blasted Ti6Al4V Alloy. Materials Today: Proceedings, 2020, 32, 27-36.	1.8	5
50	Thermal, viscoelastic and mechanical properties' optimization of polyphenylene sulfide via optimal processing parameters using the Taguchi method. Journal of Applied Statistics, 2016, 43, 2661-2680.	1.3	4
51	Investigation of mechanical and tribological behaviour of expanded perlite particle reinforced polyphenylene sulphide. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2021, 235, 2356-2367.	1.1	4
52	Laser process parameter optimization of dimple created on oriented carbon fiber reinforced epoxy composites. Journal of Composite Materials, 2021, 55, 4029-4043.	2.4	4
53	Effect of Silane as Coupling Agent on Dynamic Mechanical Properties of Volcanic Ash Filled PPS Composites. Acta Physica Polonica A, 2016, 129, 492-494.	0.5	4
54	Silane Coupling Efficiency on Thermal Properties of Volcanic Ash Filled PPS Composites. Acta Physica Polonica A, 2016, 129, 498-500.	0.5	4

#	Article	IF	CITATIONS
55	Title is missing!. Journal of Materials Science Letters, 2002, 21, 1809-1811.	0.5	3
56	Influence of laser parameters in surface texturing of polyphenylene sulfide composites. Journal of Applied Polymer Science, 2019, 136, 47976.	2.6	3
57	Surface Modification Effect of Volcanic Ash Particles Using Silane Coupling Agent on Mechanical Properties of Polyphenylene Sulfide Composites. Acta Physica Polonica A, 2016, 129, 495-497.	0.5	3
58	Improvement of the Toughness and Crack Propagation Resistance Properties of Poly(Phenylene) Tj ETQq0 0 0 rg	BT/Overlo	ock ₃ 10 Tf 50 6
59	BIOMECHANICAL COMPARISON OF MEDIAL VERSUS LATERAL SIDED PLATING IN FEMORAL FRACTURES. Acta Ortopedica Brasileira, 2018, 26, 265-270.	0.5	2
60	Bearing strength of pin-connected polymer composites subjected to dynamic loading. Polymer Composites, 2009, 31, NA-NA.	4.6	1
61	TAILORING SURFACE MORPHOLOGY AND TOPOGRAPHY OF SHOT-PEENED TI6Al4V VIA GRIT BLASTING. Materiali in Tehnologije, 2021, 55, .	0.5	1
62	Effects of Terpolymer Addition on the Thermal and Termomechanical Properties of Poly(Phenylene) Tj ETQq0 0 C	rgBT/Ove	erlock 10 Tf 5
63	Investigation of particle erosion of polytetrafluoroethylene and its composites. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 0, , 146442072210819.	1.1	1
64	Scratch and multi-pass scratch behavior of poly (methyl methacrylate) (PMMA). International Journal of Polymer Analysis and Characterization, 2022, 27, 359-377.	1.9	1
65	Surface Properties of Titanium Alloys Grit Blasted at Various Particle Impingement Angles. Materials Today: Proceedings, 2020, 32, 18-26.	1.8	0
66	Olivine Particle Reinforced Polyphenylene Sulfide Matrix Composites. Acta Physica Polonica A, 2017, 131, 481-484.	0.5	0