
Josef Ingenerf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3963644/publications.pdf

Version: 2024-02-01

#	Article	lF	CITATIONS
1	Understanding the Nature of Metadata: Systematic Review. Journal of Medical Internet Research, 2022, 24, e25440.	2.1	17
2	Generation of a Fast Healthcare Interoperability Resources (FHIR)-based Ontology for Federated Feasibility Queries in the Context of COVID-19: Feasibility Study. JMIR Medical Informatics, 2022, 10, e35789.	1.3	14
3	Proposal of Semantic Annotation for German Metadata Using Bidirectional Recurrent Neural Networks. Studies in Health Technology and Informatics, 2022, , .	0.2	0
4	TerminoDiff – Detecting Semantic Differences in HL7 FHIR CodeSystems. Studies in Health Technology and Informatics, 2022, , .	0.2	3
5	Mapping of ICD-O Tuples to OncoTree Codes Using SNOMED CT Post-Coordination. Studies in Health Technology and Informatics, 2022, , .	0.2	2
6	TermiCron – Bridging the Gap Between FHIR Terminology Servers and Metadata Repositories. Studies in Health Technology and Informatics, 2022, , .	0.2	0
7	LUMA: A Mapping Assistant for Standardizing the Units of LOINC-Coded Laboratory Tests. Applied Sciences (Switzerland), 2022, 12, 5848.	1.3	3
8	Needs for an Integration of Specific Data Sources and Items – First Insights of a National Survey Within the German Center for Infection Research. Studies in Health Technology and Informatics, 2021, 278, 237-244.	0.2	0
9	Desiderata for a Synthetic Clinical Data Generator. Studies in Health Technology and Informatics, 2021, 281, 68-72.	0.2	0
10	APERITIF – Automatic Patient Recruiting for Clinical Trials Based on HL7 FHIR. Studies in Health Technology and Informatics, 2021, 281, 58-62.	0.2	7
11	openEHR Mapper – A Tool to Fuse Clinical and Genomic Data Using the openEHR Standard. Studies in Health Technology and Informatics, 2021, 278, 86-93.	0.2	2
12	FhirSpark – Implementing a Mediation Layer to Bring FHIR to the cBioPortal for Cancer Genomics. Studies in Health Technology and Informatics, 2021, 281, 303-307.	0.2	4
13	Fit for Purpose: Analyzing the German Archiving and Exchange Interface for Medical Practice Management Systems. Studies in Health Technology and Informatics, 2021, 278, 80-85.	0.2	2
14	Providing ART-DECOR ValueSets via FHIR Terminology Servers – A Technical Report. Studies in Health Technology and Informatics, 2021, 283, 127-135.	0.2	2
15	Hands on the Medical Informatics Initiative Core Data Set — Lessons Learned from Converting the MIMIC-IV. Studies in Health Technology and Informatics, 2021, 283, 119-126.	0.2	7
16	Medical Data Engineering $\hat{a} \in$ " Theory and Practice. Communications in Computer and Information Science, 2021, , 269-284.	0.4	1
17	Service-Oriented Medical Device Connectivity: Particular Standards for Endoscopic Surgery. , 2020, 2020, 5649-5652.		2
18	A Smart Mapping Editor for Standardised Data Transformation. Studies in Health Technology and Informatics, 2020, 270, 1185-1186.	0.2	3

JOSEF INGENERF

#	Article	IF	CITATIONS
19	Using Data Distribution Service for IEEE 11073-10207 Medical Device Communication. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2020, , 127-139.	0.2	0
20	Analysis of ISO/TS 21526 Towards the Extension of a Standardized Query API. Studies in Health Technology and Informatics, 2020, 275, 202-206.	0.2	2
21	The LOINC Content Model and Its Limitations of Usage in the Laboratory Domain. Studies in Health Technology and Informatics, 2020, 270, 437-442.	0.2	5
22	Enabling artificial intelligence in high acuity medical environments. Minimally Invasive Therapy and Allied Technologies, 2019, 28, 120-126.	0.6	12
23	MDRCupid: A Configurable Metadata Matching Toolbox. Studies in Health Technology and Informatics, 2019, 264, 88-92.	0.2	4
24	Scientific Challenge in eHealth: MAPPATHON, a Metadata Mapping Challenge. Studies in Health Technology and Informatics, 2019, 264, 1516-1517.	0.2	2
25	Aggregation and Visualization of Laboratory Data by Using Ontological Tools Based on LOINC and SNOMED CT. Studies in Health Technology and Informatics, 2019, 264, 108-112.	0.2	4
26	Service-Oriented Device Connectivity: Device Specialisations for Interoperability. Studies in Health Technology and Informatics, 2019, 264, 509-511.	0.2	3
27	Towards a Federation of Metadata Repositories: Addressing Technical Interoperability. Studies in Health Technology and Informatics, 2019, 267, 74-80.	0.2	0
28	Connecting the clinical IT infrastructure to a service-oriented architecture of medical devices. Biomedizinische Technik, 2018, 63, 57-68.	0.9	18
29	Point-of-care medical devices and systems interoperability: A mapping of ICE and FHIR. , 2016, , .		6
30	Extending the IEEE 11073-1010X nomenclature for the modelling of surgical devices. , 2016, , .		5
31	Metadata Repository for Improved Data Sharing and Reuse Based on HL7 FHIR. Studies in Health Technology and Informatics, 2016, 228, 162-6.	0.2	7
32	Reporting Device Observations for semantic interoperability of surgical devices and clinical information systems. , 2015, 2015, 1725-8.		4
33	Design, Implementation, and Evaluation of a Mobile Application for Patient Empowerment and Management of Long-Term Follow-Up after Childhood Cancer. Klinische Padiatrie, 2015, 227, 166-170.	0.2	20
34	A mobile application to manage and minimise the risk of late effects caused by childhood cancer. Studies in Health Technology and Informatics, 2015, 210, 798-802.	0.2	7
35	Semantic interoperability in the OR.NET project on networking of medical devices and information systems — A requirements analysis. , 2014, , .		2
36	Rule-based interface generation on mobile devices for structured documentation. Studies in Health Technology and Informatics, 2014, 205, 313-7.	0.2	0

JOSEF INGENERF

#	Article	IF	CITATIONS
37	The "North German Tumor Bank of Colorectal Cancerâ€ı status report after the first 2Âyears of support by the German Cancer Aid Foundation. Langenbeck's Archives of Surgery, 2013, 398, 251-258.	0.8	16
38	Assessing Applicability of Ontological Principles to Different Types of Biomedical Vocabularies. Methods of Information in Medicine, 2009, 48, 459-467.	0.7	10
39	A version management system for SNOMED CT. Studies in Health Technology and Informatics, 2008, 136, 827-32.	0.2	2
40	Biomedical vocabulariesthe demand for differentiation. Studies in Health Technology and Informatics, 2007, 129, 610-5.	0.2	2
41	Relevance of Terminological Standards and Services in Telemedicine. , 2006, , 110-134.		1
42	Comparing Paper-based with Electronic Patient Records: Lessons Learned during a Study on Diagnosis and Procedure Codes. Journal of the American Medical Informatics Association: JAMIA, 2003, 10, 470-477.	2.2	89
43	Standardized terminological services enabling semantic interoperability between distributed and heterogeneous systems. International Journal of Medical Informatics, 2001, 64, 223-240.	1.6	36
44	Telemedicine and terminology: different needs of context information. IEEE Transactions on Information Technology in Biomedicine, 1999, 3, 92-100.	3.6	23
45	Saying what you mean, meaning what you say, sharing and re-using what has been said. International Journal of Healthcare Technology and Management, 1999, 1, 328.	0.1	0
46	Bemerkungen über ML und seine polymorphe Typenstruktur/ Remark on ML and its Polymorphic Type Structure. IT - Information Technology, 1987, 29, 235-240.	0.6	0