
Jeroen Hugenholtz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3963263/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptome Analysis of a Spray Drying-Resistant Subpopulation Reveals a Zinc-Dependent Mechanism for Robustness in L. lactis SK11. Frontiers in Microbiology, 2018, 9, 2418.	1.5	8
2	Strain-Dependent Transcriptome Signatures for Robustness in Lactococcus lactis. PLoS ONE, 2016, 11, e0167944.	1.1	22
3	Genome-scale reconstruction of the Streptococcus pyogenes M49 metabolic network reveals growth requirements and indicates potential drug targets. Journal of Biotechnology, 2016, 232, 25-37.	1.9	33
4	Using a Genome-Scale Metabolic Model of Enterococcus faecalis V583 To Assess Amino Acid Uptake and Its Impact on Central Metabolism. Applied and Environmental Microbiology, 2015, 81, 1622-1633.	1.4	36
5	Fermentation-induced variation in heat and oxidative stress phenotypes of Lactococcus lactis MG1363 reveals transcriptome signatures for robustness. Microbial Cell Factories, 2014, 13, 148.	1.9	27
6	Diversity in Robustness of Lactococcus lactis Strains during Heat Stress, Oxidative Stress, and Spray Drying Stress. Applied and Environmental Microbiology, 2014, 80, 603-611.	1.4	43
7	Use of non-growing Lactococcus lactis cell suspensions for production of volatile metabolites with direct relevance for flavour formation during dairy fermentations. Microbial Cell Factories, 2014, 13, 176.	1.9	25
8	Food biotechnology. Current Opinion in Biotechnology, 2013, 24, 121-123.	3.3	2
9	Traditional biotechnology for new foods and beverages. Current Opinion in Biotechnology, 2013, 24, 155-159.	3.3	90
10	Role of phosphate in the central metabolism of two lactic acid bacteria – a comparative systems biology approach. FEBS Journal, 2012, 279, 1274-1290.	2.2	52
11	Characterization of Three Lactic Acid Bacteria and Their Isogenic <i>ldh</i> Deletion Mutants Shows Optimization for <i>Y</i> _{ATP} (Cell Mass Produced per Mole of ATP) at Their Physiological pHs. Applied and Environmental Microbiology, 2011, 77, 612-617.	1.4	25
12	Understanding the physiology of <i>Lactobacillus plantarum</i> at zero growth. Molecular Systems Biology, 2010, 6, 413.	3.2	60
13	High-Level Expression of Lactobacillus β-Galactosidases in Lactococcus lactis Using the Food-Grade, Nisin-Controlled Expression System NICE. Journal of Agricultural and Food Chemistry, 2010, 58, 2279-2287.	2.4	33
14	Risk Assessment of Genetically Modified Lactic Acid Bacteria Using the Concept of Substantial Equivalence. Current Microbiology, 2010, 61, 590-595.	1.0	22
15	Supplementation with engineered Lactococcus lactis improves the folate status in deficient rats. Nutrition, 2010, 26, 835-841.	1.1	33
16	Genome-Scale Model of <i>Streptococcus thermophilus</i> LMG18311 for Metabolic Comparison of Lactic Acid Bacteria. Applied and Environmental Microbiology, 2009, 75, 3627-3633.	1.4	148
17	Effect of Amino Acid Availability on Vitamin B 12 Production in Lactobacillus reuteri. Applied and Environmental Microbiology, 2009, 75, 3930-3936.	1.4	26
18	Genomics and high-throughput screening approaches for optimal flavour production in dairy fermentation. International Dairy Journal, 2008, 18, 781-789.	1.5	26

Jeroen Hugenholtz

#	Article	IF	CITATIONS
19	The lactic acid bacterium as a cell factory for food ingredient production. International Dairy Journal, 2008, 18, 466-475.	1.5	65
20	Folate biofortification in food plants. Trends in Plant Science, 2008, 13, 28-35.	4.3	112
21	High-Level Folate Production in Fermented Foods by the B ₁₂ Producer <i>Lactobacillus reuteri</i> JCM1112. Applied and Environmental Microbiology, 2008, 74, 3291-3294.	1.4	131
22	9th International Symposium on Lactic Acid Bacteria. Applied and Environmental Microbiology, 2008, 74, 4589-4589.	1.4	1
23	Unraveling Microbial Interactions in Food Fermentations: from Classical to Genomics Approaches. Applied and Environmental Microbiology, 2008, 74, 4997-5007.	1.4	255
24	Diversity Analysis of Dairy and Nondairy <i>Lactococcus lactis</i> Isolates, Using a Novel Multilocus Sequence Analysis Scheme and (GTG) ₅ -PCR Fingerprinting. Applied and Environmental Microbiology, 2007, 73, 7128-7137.	1.4	95
25	Glutathione Protects Lactococcus lactis against Acid Stress. Applied and Environmental Microbiology, 2007, 73, 5268-5275.	1.4	83
26	Lytr, a phage-derived amidase is most effective in induced lysis of Lactococcus lactis compared with other lactococcal amidases and glucosaminidases. International Dairy Journal, 2007, 17, 926-936.	1.5	14
27	Pseudovitamin is the corrinoid produced by <i>Lactobacillus reuteri</i> CRL1098 under anaerobic conditions. FEBS Letters, 2007, 581, 4865-4870.	1.3	72
28	High-Level Production of the Low-Calorie Sugar Sorbitol by Lactobacillus plantarum through Metabolic Engineering. Applied and Environmental Microbiology, 2007, 73, 1864-1872.	1.4	108
29	Introducing glutathione biosynthetic capability into Lactococcus lactis subsp. cremoris NZ9000 improves the oxidative-stress resistance of the host. Metabolic Engineering, 2006, 8, 662-671.	3.6	31
30	Functional ingredient production: application of global metabolic models. Current Opinion in Biotechnology, 2005, 16, 190-197.	3.3	35
31	Using Lactococcus lactis for glutathione overproduction. Applied Microbiology and Biotechnology, 2005, 67, 83-90.	1.7	45
32	Overproduction of Heterologous Mannitol 1-Phosphatase: a Key Factor for Engineering Mannitol Production by Lactococcus lactis. Applied and Environmental Microbiology, 2005, 71, 1507-1514.	1.4	57
33	A Nudix Enzyme Removes Pyrophosphate from Dihydroneopterin Triphosphate in the Folate Synthesis Pathway of Bacteria and Plants. Journal of Biological Chemistry, 2005, 280, 5274-5280.	1.6	96
34	Transformation of Folate-Consuming Lactobacillus gasseri into a Folate Producer. Applied and Environmental Microbiology, 2004, 70, 3146-3148.	1.4	64
35	Metabolic Engineering of Mannitol Production in Lactococcus lactis : Influence of Overexpression of Mannitol 1-Phosphate Dehydrogenase in Different Genetic Backgrounds. Applied and Environmental Microbiology, 2004, 70, 4286-4292.	1.4	36
36	Engineering metabolic highways in Lactococci and other lactic acid bacteria. Trends in Biotechnology, 2004, 22, 72-79.	4.9	126

JEROEN HUGENHOLTZ

#	Article	IF	CITATIONS
37	Enhancement of trehalose production in dairy propionibacteria through manipulation of environmental conditions. International Journal of Food Microbiology, 2004, 91, 195-204.	2.1	53
38	Multivitamin production in Lactococcus lactis using metabolic engineering. Metabolic Engineering, 2004, 6, 109-115.	3.6	117
39	Riboflavin Production in Lactococcus lactis : Potential for In Situ Production of Vitamin-Enriched Foods. Applied and Environmental Microbiology, 2004, 70, 5769-5777.	1.4	209
40	Metabolic pathway engineering in lactic acid bacteria. Current Opinion in Biotechnology, 2003, 14, 232-237.	3.3	138
41	Effects of Cultivation Conditions on Folate Production by Lactic Acid Bacteria. Applied and Environmental Microbiology, 2003, 69, 4542-4548.	1.4	188
42	Increased Production of Folate by Metabolic Engineering of Lactococcus lactis. Applied and Environmental Microbiology, 2003, 69, 3069-3076.	1.4	169
43	Glutathione Protects Lactococcus lactis against Oxidative Stress. Applied and Environmental Microbiology, 2003, 69, 5739-5745.	1.4	139
44	ControlledModulation of Folate Polyglutamyl Tail Length by Metabolic Engineeringof Lactococcuslactis. Applied and Environmental Microbiology, 2003, 69, 7101-7107.	1.4	42
45	Lactobacillus reuteri CRL1098 Produces Cobalamin. Journal of Bacteriology, 2003, 185, 5643-5647.	1.0	180
46	IS 981 -Mediated Adaptive Evolution Recovers Lactate Production by ldhB Transcription Activation in a Lactate Dehydrogenase-Deficient Strain of Lactococcus lactis. Journal of Bacteriology, 2003, 185, 4499-4507.	1.0	68
47	Effect of Different NADH Oxidase Levels on Glucose Metabolism by Lactococcus lactis: Kinetics of Intracellular Metabolite Pools Determined by In Vivo Nuclear Magnetic Resonance. Applied and Environmental Microbiology, 2002, 68, 6332-6342.	1.4	82
48	Metabolic engineering of Lactococcus lactis: the impact of genomics and metabolic modelling. Journal of Biotechnology, 2002, 98, 199-213.	1.9	28
49	Microbes from raw milk for fermented dairy products. International Dairy Journal, 2002, 12, 91-109.	1.5	425
50	An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. International Dairy Journal, 2002, 12, 163-171.	1.5	498
51	Nutraceutical production with food-grade microorganisms. Current Opinion in Biotechnology, 2002, 13, 497-507.	3.3	142
52	Biotechonology: Paper Alert. Current Opinion in Biotechnology, 2002, 13, 523-530.	3.3	0
53	Nutraceutical production by propionibacteria. Dairy Science and Technology, 2002, 82, 103-112.	0.9	90
54	Sugar catabolism and its impact on the biosynthesis and engineering of exopolysaccharide production in lactic acid bacteria. International Dairy Journal, 2001, 11, 723-732.	1.5	117

#	Article	IF	CITATIONS
55	Physiological function of exopolysaccharides produced by Lactococcus lactis. International Journal of Food Microbiology, 2001, 64, 71-80.	2.1	171
56	Spontaneous Formation of a Mannitol-Producing Variant of Leuconostoc pseudomesenteroides Grown in the Presence of Fructose. Applied and Environmental Microbiology, 2001, 67, 2867-2870.	1.4	50
57	Fluorescent Method for Monitoring Cheese Starter Permeabilization and Lysis. Applied and Environmental Microbiology, 2001, 67, 4264-4271.	1.4	103
58	Lactic acid bacteria as a cell factory: rerouting of carbon metabolism in Lactococcus lactis by metabolic engineering. Enzyme and Microbial Technology, 2000, 26, 840-848.	1.6	90
59	Changes in Glycolytic Activity of Lactococcus lactis Induced by Low Temperature. Applied and Environmental Microbiology, 2000, 66, 3686-3691.	1.4	74
60	Lactococcus lactis as a Cell Factory for High-Level Diacetyl Production. Applied and Environmental Microbiology, 2000, 66, 4112-4114.	1.4	168
61	Analysis of sugar metabolism in an EPS producing Lactococcus lactis by 31P NMR. Journal of Biotechnology, 2000, 77, 17-23.	1.9	12
62	Pyruvate flux distribution in NADH-oxidase-overproducingLactococcus lactisstrain as a function of culture conditions. FEMS Microbiology Letters, 1999, 179, 461-466.	0.7	21
63	Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nature Biotechnology, 1999, 17, 588-592.	9.4	174
64	In vivo nuclear magnetic resonance studies of glycolytic kinetics inLactococcus lactis. , 1999, 64, 200-212.		107
65	Regulation of Exopolysaccharide Production by <i>Lactococcus lactis</i> subsp. <i>cremoris</i> by the Sugar Source. Applied and Environmental Microbiology, 1999, 65, 5003-5008.	1.4	122
66	Acetate Utilization in <i>Lactococcus lactis</i> Deficient in Lactate Dehydrogenase: a Rescue Pathway for Maintaining Redox Balance. Journal of Bacteriology, 1999, 181, 5521-5526.	1.0	48
67	Making More of Milk Sugar by Engineering Lactic Acid Bacteria. International Dairy Journal, 1998, 8, 227-233.	1.5	21
68	Thermoinducible Lysis in Lactococcus lactis subsp. cremoris SK110: Implications for Cheese Ripening. International Dairy Journal, 1998, 8, 275-280.	1.5	26
69	Redistribution métabolique chez une souche de Lactobacillus plantarum déficiente en lactate deshydrogénase. Dairy Science and Technology, 1998, 78, 107-116.	0.9	6
70	Lysis of <i>Lactococcus lactis</i> subsp. <i>cremoris</i> SK110 and Its Nisin-Immune Transconjugant in Relation to Flavor Development in Cheese. Applied and Environmental Microbiology, 1998, 64, 1950-1953.	1.4	28
71	Cofactor Engineering: a Novel Approach to Metabolic Engineering in <i>Lactococcus lactis</i> by Controlled Expression of NADH Oxidase. Journal of Bacteriology, 1998, 180, 3804-3808.	1.0	217
72	Mode of Action of Nisin Z against <i>Listeria monocytogenes</i> Scott A Grown at High and Low Temperatures. Applied and Environmental Microbiology, 1994, 60, 1962-1968.	1.4	157

#	Article	IF	CITATIONS
73	The physiology of Lactococcus lactis subsp. lactis biovar. diacetylactis immobilized in hollow-fibre bioreactors: glucose, lactose and citrate metabolism at high cell densities. Applied Microbiology and Biotechnology, 1993, 39, 94-98.	1.7	7
74	Citrate metabolism in lactic acid bacteria. FEMS Microbiology Reviews, 1993, 12, 165-178.	3.9	346
75	Growth and Energy Generation by <i>Lactococcus lactis</i> subsp. <i>lactis</i> biovar diacetylactis during Citrate Metabolism. Applied and Environmental Microbiology, 1993, 59, 4216-4222.	1.4	62
76	Diacetyl production by different strains of Lactococcus lactis subsp. lactis var. diacetylactis and Leuconostoc spp Applied Microbiology and Biotechnology, 1992, 38, 17.	1.7	97
77	The stability of the lactose and citrate plasmids inLactococcus lactissubsp.lactisbiovar.diacetylactis. FEMS Microbiology Letters, 1992, 96, 7-11.	0.7	21
78	Citrate Fermentation by <i>Lactococcus</i> and <i>Leuconostoc</i> spp. Applied and Environmental Microbiology, 1991, 57, 3535-3540.	1.4	181
79	Amino acid transport in membrane vesicles ofClostridium thermoautotrophicum. FEMS Microbiology Letters, 1990, 69, 117-121.	0.7	17
80	Detection of Specific Strains and Variants of <i>Streptococcus cremoris</i> in Mixed Cultures by Immunofluorescence. Applied and Environmental Microbiology, 1987, 53, 149-155.	1.4	38
81	Selection of Protease-Positive and Protease-Negative Variants of <i>Streptococcus cremoris</i> . Applied and Environmental Microbiology, 1987, 53, 309-314.	1.4	51
82	Cell Wall-Associated Proteases of <i>Streptococcus cremoris</i> Wg2. Applied and Environmental Microbiology, 1987, 53, 853-859.	1.4	62
83	The Proteolytic Systems of <i>Streptococcus cremoris</i> : an Immunological Analysis. Applied and Environmental Microbiology, 1984, 48, 1105-1110.	1.4	94