Alan Hanash

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3962949/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature, 2015, 528, 560-564.	27.8	818
2	Interleukin-22: Immunobiology and Pathology. Annual Review of Immunology, 2015, 33, 747-785.	21.8	679
3	Intestinal Blautia Is Associated with Reduced Death from Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2015, 21, 1373-1383.	2.0	619
4	Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. Journal of Experimental Medicine, 2012, 209, 903-911.	8.5	552
5	Interleukin-22 Protects Intestinal Stem Cells from Immune-Mediated Tissue Damage and Regulates Sensitivity to Graft versus Host Disease. Immunity, 2012, 37, 339-350.	14.3	509
6	Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Science Translational Medicine, 2016, 8, 339ra71.	12.4	404
7	Interleukin-22 Drives Endogenous Thymic Regeneration in Mice. Science, 2012, 336, 91-95.	12.6	334
8	Integrated genomic DNA/RNA profiling of hematologic malignancies in the clinical setting. Blood, 2016, 127, 3004-3014.	1.4	244
9	Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. Journal of Experimental Medicine, 2014, 211, 1723-1731.	8.5	219
10	Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity. Nature Medicine, 2017, 23, 242-249.	30.7	179
11	Nrf2 regulates haematopoietic stem cell function. Nature Cell Biology, 2013, 15, 309-316.	10.3	173
12	Off-the-shelf EBV-specific T cell immunotherapy for rituximab-refractory EBV-associated lymphoma following transplantation. Journal of Clinical Investigation, 2020, 130, 733-747.	8.2	161
13	RIG-I/MAVS and STING signaling promote gut integrity during irradiation- and immune-mediated tissue injury. Science Translational Medicine, 2017, 9, .	12.4	114
14	High day 28 ST2 levels predict for acute graft-versus-host disease and transplant-related mortality after cord blood transplantation. Blood, 2015, 125, 199-205.	1.4	109
15	Extrathymically Generated Regulatory T Cells Establish a Niche for Intestinal Border-Dwelling Bacteria and Affect Physiologic Metabolite Balance. Immunity, 2018, 48, 1245-1257.e9.	14.3	100
16	Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration. Science Immunology, 2018, 3, .	11.9	93
17	T cell–derived interferon-γ programs stem cell death in immune-mediated intestinal damage. Science Immunology, 2019, 4,	11.9	85
18	T Cell Recruitment to the Intestinal Stem Cell Compartment Drives Immune-Mediated Intestinal Damage after Allogeneic Transplantation. Immunity, 2019, 51, 90-103.e3.	14.3	70

Alan Hanash

#	Article	IF	CITATIONS
19	Abrogation of donor T-cell IL-21 signaling leads to tissue-specific modulation of immunity and separation of GVHD from GVL. Blood, 2011, 118, 446-455.	1.4	68
20	National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: IV. The 2020 Highly morbid forms report. Transplantation and Cellular Therapy, 2021, 27, 817-835.	1.2	62
21	Loss of thymic innate lymphoid cells leads to impaired thymopoiesis in experimental graft-versus-host disease. Blood, 2017, 130, 933-942.	1.4	55
22	Role of the intestinal mucosa in acute gastrointestinal GVHD. Blood, 2016, 128, 2395-2402.	1.4	39
23	Suppression of luteinizing hormone enhances HSC recovery after hematopoietic injury. Nature Medicine, 2018, 24, 239-246.	30.7	34
24	Intensified Mycophenolate Mofetil Dosing and Higher Mycophenolic Acid Trough Levels Reduce Severe Acute Graft-versus-Host Disease after Double-Unit Cord Blood Transplantation. Biology of Blood and Marrow Transplantation, 2015, 21, 920-925.	2.0	33
25	High progression-free survival after intermediate intensity double unit cord blood transplantation in adults. Blood Advances, 2020, 4, 6064-6076.	5.2	29
26	Association between Nondominant Unit Total Nucleated Cell Dose and Engraftment in Myeloablative Double-Unit Cord Blood Transplantation. Biology of Blood and Marrow Transplantation, 2015, 21, 1981-1984.	2.0	9
27	Challenges and opportunities targeting mechanisms of epithelial injury and recovery in acute intestinal graft-versus-host disease. Mucosal Immunology, 2022, 15, 605-619.	6.0	8
28	Role of the intestinal mucosa in acute gastrointestinal GVHD. Hematology American Society of Hematology Education Program, 2016, 2016, 119-127.	2.5	6
29	BCL6 inhibition: a chronic GVHD twofer. Blood, 2019, 133, 4-5.	1.4	3
30	TP53 Mutations in AML Predict Adverse Outcome in Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplant. Blood, 2016, 128, 3481-3481.	1.4	3
31	Cytokines in GVHD and GVL. , 2019, , 293-322.		2
32	Eomesodermin Regulates The Early Activation Of Alloreactive CD4 T Cells and Is Critical For Both Gvh and GVL Responses. Blood, 2013, 122, 133-133.	1.4	2
33	Corticosteroid Treatment Impairs Epithelial Regeneration, Limiting Intestinal Recovery in Experimental Graft Vs Host Disease. Blood, 2021, 138, 88-88.	1.4	2
34	The enteric virome in hematopoietic stem cell transplantation: ready for its close-up. Nature Medicine, 2017, 23, 1012-1013.	30.7	1
35	Over-Expression of TRAIL on Donor T Cells Enhances GVT and Suppresses Gvhd Via Elimination of Alloreactive T Cells and Host APC. Blood, 2011, 118, 817-817.	1.4	1
36	CD19-Targeted Donor T Cells Exert Potent Graft Versus Lymphoma Activity and Attenuated Gvhd. Blood, 2012, 120, 451-451.	1.4	1

Alan Hanash

#	Article	IF	CITATIONS
37	IL-22 Administration Decreases Intestinal Gvhd Pathology, Increases Intestinal Stem Cell Recovery, and Enhances Immune Reconstitution Following Allogeneic Hematopoietic Transplantation. Blood, 2013, 122, 290-290.	1.4	1
38	TCR Repertoires in Graft-Versus-Host-Disease (GVHD)-Target Tissues Reveals Tissue Specificity of the Alloimmune Response. Blood, 2020, 136, 21-23.	1.4	1
39	Gvhd, Hematopoietic Dysfunction, and Post-Transplant Immune Deficiency: Loss of Marrow Function Leads to Ineffective Extramedullary Hematopoiesis, However Lymphoid Reconstitution Is Restored by the Synergistic Effects of KGF, Sex Steroid Ablation, and Precursor T Cell Adoptive Therapy Blood, 2010. 116. 1468-1468.	1.4	0
40	Abrogation of Donor T Cell IL-21 Signaling Leads to Tissue-Specific Modulation of Immunity and Separation of Gvhd From GVL. Blood, 2010, 116, 729-729.	1.4	0
41	Genetic Engineering of Donor T Cells for BMT Immunotherapy: Expression of TRAIL and PLZF Selectively Enhances GVT and Abrogates Gvhd. Blood, 2010, 116, 730-730.	1.4	0
42	Innate Lymphoid Cell-Derived IL-22 Mediates Endogenous Thymic Repair Under the Control of IL-23. Blood, 2011, 118, 143-143.	1.4	0
43	The Central Nervous System Is a Target Organ of Acute Graft-Versus-Host Disease. Blood, 2011, 118, 1895-1895.	1.4	0
44	Age-Related Thymic Involution Triggers Intrinsic Regeneration Pathways but They Remain Ineffective for Its Renewal. Blood, 2012, 120, 1043-1043.	1.4	0
45	Intrathymic Innate Lymphoid Cells: Long-Lived Mediators Of Immune Regeneration. Blood, 2013, 122, 289-289.	1.4	0
46	Mutational Profiling Of Myeloid Malignancies For Prediction Of Disease Relapse Following Allogeneic Stem Cell Transplantation. Blood, 2013, 122, 2096-2096.	1.4	0
47	Suppression of Luteinizing Hormone Enhances HSC Recovery after Hematopoietic Injuries. Blood, 2016, 128, 370-370	1.4	0