Zheng-Jiang Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3962469/publications.pdf

Version: 2024-02-01

66234 74018 7,170 75 42 75 citations h-index g-index papers 81 81 81 12811 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An accelerated workflow for untargeted metabolomics using the METLIN database. Nature Biotechnology, 2012, 30, 826-828.	9.4	472
2	A lipidome atlas in MS-DIAL 4. Nature Biotechnology, 2020, 38, 1159-1163.	9.4	424
3	Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nature Protocols, 2013, 8, 451-460.	5 . 5	379
4	Effect of Surface Charge on the Uptake and Distribution of Gold Nanoparticles in Four Plant Species. Environmental Science & Samp; Technology, 2012, 46, 12391-12398.	4.6	332
5	Colorimetric Bacteria Sensing Using a Supramolecular Enzyme–Nanoparticle Biosensor. Journal of the American Chemical Society, 2011, 133, 9650-9653.	6.6	317
6	Entrapment of Hydrophobic Drugs in Nanoparticle Monolayers with Efficient Release into Cancer Cells. Journal of the American Chemical Society, 2009, 131, 1360-1361.	6.6	305
7	Recognition-mediated activation of therapeutic gold nanoparticles inside living cells. Nature Chemistry, 2010, 2, 962-966.	6.6	295
8	Toward †Omic Scale Metabolite Profiling: A Dual Separation†Mass Spectrometry Approach for Coverage of Lipid and Central Carbon Metabolism. Analytical Chemistry, 2013, 85, 6876-6884.	3.2	242
9	The Role of Surface Functionality on Acute Cytotoxicity, ROS Generation and DNA Damage by Cationic Gold Nanoparticles. Small, 2010, 6, 2246-2249.	5. 2	232
10	Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. Nature Communications, 2019, 10, 1516.	5. 8	218
11	Ion mobility collision cross-section atlas for known and unknown metabolite annotation in untargeted metabolomics. Nature Communications, 2020, 11, 4334.	5 . 8	194
12	Intracellular Delivery of a Membrane-Impermeable Enzyme in Active Form Using Functionalized Gold Nanoparticles. Journal of the American Chemical Society, 2010, 132, 2642-2645.	6.6	176
13	Direct Delivery of Functional Proteins and Enzymes to the Cytosol Using Nanoparticle-Stabilized Nanocapsules. ACS Nano, 2013, 7, 6667-6673.	7.3	176
14	Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Analytical Chemistry, 2016, 88, 11084-11091.	3.2	173
15	LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Analytical Chemistry, 2017, 89, 9559-9566.	3.2	171
16	Serum metabolomics for early diagnosis of esophageal squamous cell carcinoma by UHPLC-QTOF/MS. Metabolomics, 2016, 12, 1.	1.4	141
17	Normalization and integration of large-scale metabolomics data using support vector regression. Metabolomics, $2016, 12, 1.$	1.4	134
18	Multiplexed Screening of Cellular Uptake of Gold Nanoparticles Using Laser Desorption/Ionization Mass Spectrometry. Journal of the American Chemical Society, 2008, 130, 14139-14143.	6.6	126

#	Article	IF	Citations
19	Stability of quantum dots in live cells. Nature Chemistry, 2011, 3, 963-968.	6.6	121
20	Drug Delivery Using Nanoparticleâ€Stabilized Nanocapsules. Angewandte Chemie - International Edition, 2011, 50, 477-481.	7.2	114
21	Surface Properties Dictate Uptake, Distribution, Excretion, and Toxicity of Nanoparticles in Fish. Small, 2010, 6, 2261-2265.	5.2	113
22	Epigenetic drift of H3K27me3 in aging links glycolysis to healthy longevity in Drosophila. ELife, 2018, 7, .	2.8	113
23	An integrated targeted metabolomic platform for high-throughput metabolite profiling and automated data processing. Metabolomics, 2015, 11, 1575-1586.	1.4	112
24	One-Step Immobilization of Glucose Oxidase in a Silica Matrix on a Pt Electrode by an Electrochemically Induced Solâ^'Gel Process. Langmuir, 2007, 23, 11896-11900.	1.6	106
25	Advancing untargeted metabolomics using data-independent acquisition mass spectrometry technology. Analytical and Bioanalytical Chemistry, 2019, 411, 4349-4357.	1.9	102
26	SWATHtoMRM: Development of High-Coverage Targeted Metabolomics Method Using SWATH Technology for Biomarker Discovery. Analytical Chemistry, 2018, 90, 4062-4070.	3.2	99
27	Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death. Journal of Cell Biology, 2015, 210, 705-716.	2.3	95
28	Daily Oscillation of the Excitation-Inhibition Balance in Visual Cortical Circuits. Neuron, 2020, 105, 621-629.e4.	3.8	94
29	MetDIA: Targeted Metabolite Extraction of Multiplexed MS/MS Spectra Generated by Data-Independent Acquisition. Analytical Chemistry, 2016, 88, 8757-8764.	3.2	93
30	A vitamin-C-derived DNA modification catalysed by an algal TET homologue. Nature, 2019, 569, 581-585.	13.7	72
31	The Interplay of Monolayer Structure and Serum Protein Interactions on the Cellular Uptake of Gold Nanoparticles. Small, 2012, 8, 2659-2663.	5.2	71
32	MetCCS predictor: a web server for predicting collision cross-section values of metabolites in ion mobility-mass spectrometry based metabolomics. Bioinformatics, 2017, 33, 2235-2237.	1.8	67
33	Absolute quantitative lipidomics reveals lipidome-wide alterations in aging brain. Metabolomics, 2018, 14, 5.	1.4	66
34	Advancing the large-scale CCS database for metabolomics and lipidomics at the machine-learning era. Current Opinion in Chemical Biology, 2018, 42, 34-41.	2.8	64
35	Laser desorption/ionization mass spectrometry analysis of monolayer-protected gold nanoparticles. Analytical and Bioanalytical Chemistry, 2010, 396, 1025-1035.	1.9	62
36	Arteriovenous Blood Metabolomics: A Readout of Intra-Tissue Metabostasis. Scientific Reports, 2015, 5, 12757.	1.6	62

#	Article	IF	Citations
37	Comprehensive metabolomics identified lipid peroxidation as a prominent feature in human plasma of patients with coronary heart diseases. Redox Biology, 2017, 12, 899-907.	3.9	59
38	LipidIMMS Analyzer: integrating multi-dimensional information to support lipid identification in ion mobilityâ€"mass spectrometry based lipidomics. Bioinformatics, 2019, 35, 698-700.	1.8	55
39	CLOCK Acetylates ASS1 to Drive Circadian Rhythm of Ureagenesis. Molecular Cell, 2017, 68, 198-209.e6.	4.5	53
40	The emerging role of ion mobility-mass spectrometry in lipidomics to facilitate lipid separation and identification. TrAC - Trends in Analytical Chemistry, 2019, 116, 332-339.	5.8	53
41	Engineered nanoparticle surfaces for improved mass spectrometric analyses. Analyst, The, 2009, 134, 2183.	1.7	52
42	Comprehensive bioimaging with fluorinated nanoparticles using breathable liquids. Nature Communications, 2015, 6, 5998.	5.8	50
43	Serum Metabolomics Identifies Dysregulated Pathways and Potential Metabolic Biomarkers for Hyperuricemia and Gout. Arthritis and Rheumatology, 2021, 73, 1738-1748.	2.9	49
44	DecoMetDIA: Deconvolution of Multiplexed MS/MS Spectra for Metabolite Identification in SWATH-MS-Based Untargeted Metabolomics. Analytical Chemistry, 2019, 91, 11897-11904.	3.2	43
45	Predicting the pathological response to neoadjuvant chemoradiation using untargeted metabolomics in locally advanced rectal cancer. Radiotherapy and Oncology, 2018, 128, 548-556.	0.3	42
46	Determination of the Intracellular Stability of Gold Nanoparticle Monolayers Using Mass Spectrometry. Analytical Chemistry, 2012, 84, 4321-4326.	3.2	40
47	Regulating exocytosis of nanoparticles via host–guest chemistry. Organic and Biomolecular Chemistry, 2015, 13, 2474-2479.	1.5	40
48	WavelCA: A novel algorithm to remove batch effects for large-scale untargeted metabolomics data based on wavelet analysis. Analytica Chimica Acta, 2019, 1061, 60-69.	2.6	40
49	Development of a Correlative Strategy To Discover Colorectal Tumor Tissue Derived Metabolite Biomarkers in Plasma Using Untargeted Metabolomics. Analytical Chemistry, 2019, 91, 2401-2408.	3.2	36
50	NormAE: Deep Adversarial Learning Model to Remove Batch Effects in Liquid Chromatography Mass Spectrometry-Based Metabolomics Data. Analytical Chemistry, 2020, 92, 5082-5090.	3.2	32
51	The Application of Ion Mobility-Mass Spectrometry in Untargeted Metabolomics: from Separation to Identification. Journal of Analysis and Testing, 2020, 4, 163-174.	2.5	31
52	Ion mobility-based sterolomics reveals spatially and temporally distinctive sterol lipids in the mouse brain. Nature Communications, 2021, 12, 4343.	5.8	31
53	Different regions of synaptic vesicle membrane regulate VAMP2 conformation for the SNARE assembly. Nature Communications, 2020, 11, 1531.	5 . 8	30
54	MetFlow: an interactive and integrated workflow for metabolomics data cleaning and differential metabolite discovery. Bioinformatics, 2019, 35, 2870-2872.	1.8	29

#	Article	IF	CITATIONS
55	Characterization of surface ligands on functionalized magnetic nanoparticles using laser desorption/ionization mass spectrometry (LDI-MS). Nanoscale, 2013, 5, 5063.	2.8	25
56	Development of a combined strategy for accurate lipid structural identification and quantification in ion-mobility mass spectrometry based untargeted lipidomics. Analytica Chimica Acta, 2020, 1136, 115-124.	2.6	23
57	NEK1-mediated retromer trafficking promotes blood–brain barrier integrity by regulating glucose metabolism and RIPK1 activation. Nature Communications, 2021, 12, 4826.	5.8	20
58	Metabolomics approach for predicting response to neoadjuvant chemotherapy for colorectal cancer. Metabolomics, 2018, 14, 110.	1.4	19
59	Exploring the protective effects of Danqi Tongmai tablet on acute myocardial ischemia rats by comprehensive metabolomics profiling. Phytomedicine, 2020, 74, 152918.	2.3	17
60	Proteome-Wide Analysis of N-Glycosylation Stoichiometry Using SWATH Technology. Journal of Proteome Research, 2017, 16, 3830-3840.	1.8	15
61	metID: an R package for automatable compound annotation for LCâ^'MS-based data. Bioinformatics, 2022, 38, 568-569.	1.8	15
62	A High-Throughput Targeted Metabolomics Workflow for the Detection of 200 Polar Metabolites in Central Carbon Metabolism. Methods in Molecular Biology, 2019, 1859, 263-274.	0.4	13
63	Multi-dimensional characterization and identification of sterols in untargeted LC-MS analysis using all ion fragmentation technology. Analytica Chimica Acta, 2021, 1142, 108-117.	2.6	12
64	Trapped ion mobility spectrometry-mass spectrometry improves the coverage and accuracy of four-dimensional untargeted lipidomics. Analytica Chimica Acta, 2022, 1210, 339886.	2.6	10
65	WavelCA 2.0: a novel batch effect removal method for untargeted metabolomics data without using batch information. Metabolomics, 2021, 17, 87.	1.4	9
66	Global stable-isotope tracing metabolomics reveals system-wide metabolic alternations in aging Drosophila. Nature Communications, 2022, 13 , .	5.8	9
67	Discovery of novel 1,2,3,4-tetrahydrobenzo [4, 5] thieno [2, 3-c] pyridine derivatives as potent and selective CYP17 inhibitors. European Journal of Medicinal Chemistry, 2017, 132, 157-172.	2.6	8
68	A serum metabolomics analysis reveals a panel of screening metabolic biomarkers for esophageal squamous cell carcinoma. Clinical and Translational Medicine, 2021, 11, e419.	1.7	7
69	Subacute Toxicity Study of Nicotinamide Mononucleotide via Oral Administration. Frontiers in Pharmacology, 2020, 11, 604404.	1.6	7
70	RIPK1 regulates starvation resistance by modulating aspartate catabolism. Nature Communications, 2021, 12, 6144.	5.8	6
71	Overview of Tandem Mass Spectral and Metabolite Databases for Metabolite Identification in Metabolomics. Methods in Molecular Biology, 2020, 2104, 139-148.	0.4	5
72	The Use of LipidIMMS Analyzer for Lipid Identification in Ion Mobility-Mass Spectrometry-Based Untargeted Lipidomics. Methods in Molecular Biology, 2020, 2084, 269-282.	0.4	4

ZHENG-JIANG ZHU

#	Article	IF	CITATIONS
73	Aspirin Reshapes Acetylomes in Inflammatory and Cancer Cells via CoA-Dependent and CoA-Independent Pathways. Journal of Proteome Research, 2020, 19, 962-972.	1.8	2
74	Stable-isotope Labeled Metabolic Analysis in Drosophila melanogaster: from Experimental Setup to Data Analysis. Bio-protocol, 2018, 8, e3015.	0.2	2
75	Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death. Journal of Experimental Medicine, 2015, 212, 212100IA79.	4.2	0