
Nobuhiko Takeichi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3962387/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	The origin of the highly crystallized face-centered cubic YH <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e294" altimg="si13.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:mrow </mml:msub>Âhigh-pressure phase when</mml:math 	1.9	1
2	Face-centered-cubic yttrium trihydride high-pressure phase stabilized at ambient pressures by mechanical milling. Materialia, 2021, 15, 100956.	2.7	3
3	Transport Properties of Electrolyte Solution Comprising LiPF ₆ , Ethylene Carbonate, and Propylene Carbonate. Electrochemistry, 2021, 89, 439-446.	1.4	5
4	Stability of Zirconium-Substituted Face-Centered Cubic Yttrium Hydride. Inorganic Chemistry, 2021, 60, 17715-17721.	4.0	0
5	Improved gravimetric energy density and cycle life in organic lithium-ion batteries with naphthazarin-based electrode materials. Communications Materials, 2020, 1, .	6.9	12
6	Improvement of the Battery Performance of Indigo, an Organic Electrode Material, Using PEDOT/PSS with <scp>d-</scp> Sorbitol. ACS Omega, 2020, 5, 18565-18572.	3.5	13
7	Local structure and electrochemical performances of sulfurized polyethylene glycol after heat treatment. Scientific Reports, 2020, 10, 16918.	3.3	4
8	Analytical Measurements to Elucidate Structural Behavior of 2,5â€Dimethoxyâ€1,4â€benzoquinone During Charge and Discharge. ChemSusChem, 2020, 13, 2354-2363.	6.8	5
9	Conductive polymer binder and separator for high energy density lithium organic battery. MRS Communications, 2019, 9, 979-984.	1.8	7
10	Facile Synthesis of LiH-Stabilized Face-Centered-Cubic YH ₃ High-Pressure Phase by Ball Milling Process. Inorganic Chemistry, 2019, 58, 13102-13107.	4.0	5
11	Organic positive-electrode material utilizing both an anion and cation: a benzoquinone-tetrathiafulvalene triad molecule, Q-TTF-Q, for rechargeable Li, Na, and K batteries. New Journal of Chemistry, 2019, 43, 1626-1631.	2.8	38
12	Improving the oxygen redox stability of NaCl-type cation disordered Li ₂ MnO ₃ in a composite structure of Li ₂ MnO ₃ and spinel-type LiMn ₂ O ₄ . Journal of Materials Chemistry A, 2019, 7, 5381-5390.	10.3	33
13	Spinel-Type Sodium Titanium Oxide: A Promising Sodium-Insertion Material of Sodium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 4345-4353.	5.1	22
14	Anthraquinoneâ€Based Oligomer as a Long Cycle‣ife Organic Electrode Material for Use in Rechargeable Batteries. ChemPhysChem, 2019, 20, 967-971.	2.1	22
15	Stabilization of Face-Centered Cubic High-Pressure Phase of REH ₃ (RE = Y, Gd, Dy) at Ambient Pressure by Alkali or Alkaline-Earth Substitution. Inorganic Chemistry, 2018, 57, 4686-4692.	4.0	12
16	Electrochemical Property of Li-Mn Cation Disordered Li-Rich Li ₂ MnO ₃ with NaCl Type Structure. Journal of the Electrochemical Society, 2018, 165, A291-A296.	2.9	18
17	Electrochemical In Situ Synthesis: A New Synthesis Route for Redox Active Manganese Oxides for Rechargeable Sodium Ion Battery through Initial Charge Process. Journal of the Electrochemical Society, 2017, 164, A226-A230.	2.9	9
18	Silicon micropowder negative electrode endures more than 1000 cycles when a surface-roughened clad current collector is used. Journal of Power Sources, 2017, 346, 128-133.	7.8	9

Νοβυμικό Τακειςμι

#	Article	IF	CITATIONS
19	Rechargeable organic batteries using chloro-substituted naphthazarin derivatives as positive electrode materials. Journal of Materials Science, 2017, 52, 12401-12408.	3.7	16
20	Spinel manganese oxide: A high capacity positive electrode material for the sodium ion battery. Electrochimica Acta, 2016, 212, 458-464.	5.2	17
21	Micro/Nano-Structural Transition and Hydrogen Absorption Mechanism in Mg/Cu Super-Laminate Composites. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 79, 644-650.	0.4	1
22	Influence of the preparation methods on the electrochemical properties and structural changes of alpha-sodium iron oxide as a positive electrode material for rechargeable sodium batteries. Electrochimica Acta, 2015, 182, 871-877.	5.2	14
23	Sulfone-Based Electrolyte Solutions for Rechargeable Magnesium Batteries Using 2,5-Dimethoxy-1,4-benzoquinone Positive Electrode. Journal of the Electrochemical Society, 2014, 161, A1315-A1320.	2.9	47
24	Irreversible structural change of a spinel Li4Ti5O12 particle via Na insertion-extraction cycles of a sodium-ion battery. Electrochimica Acta, 2014, 148, 175-179.	5.2	30
25	Hydrogen Absorption and Desorption Behavior of Magnesium Hydride: Incubation Period and Reaction Mechanism. Materials Transactions, 2014, 55, 1161-1167.	1.2	14
26	Micro/Nano-Structural Transition and Hydrogen Absorption Mechanism in Mg/Cu Super-Laminate Composites. Materials Transactions, 2014, 55, 1122-1128.	1.2	9
27	Indigo carmine: An organic crystal as a positive-electrode material for rechargeable sodium batteries. Scientific Reports, 2014, 4, 3650.	3.3	109
28	Hydrides Formed in ZrCo2 – Based Intermetallic Compounds Under High Hydrogen Pressure / Wodorki Wytwarzane Pod Wysokimi Cisnieniami Wodoru Ze Zwiazków Miedzymetalicznych Na Osnowie ZrCo2. Archives of Metallurgy and Materials, 2013, 58, 223-226.	0.6	2
29	Na-ion capacitor using sodium pre-doped hard carbon and activated carbon. Electrochimica Acta, 2012, 76, 320-325.	5.2	104
30	Ca7Ge-type hydride Mg6VNaxHy (O≤â‰⊉): High pressure synthesis, synchrotron X-ray analysis and hydrogen storage properties. Journal of Power Sources, 2012, 210, 158-162.	7.8	2
31	Novel Mg–Zr–A–H (A=Li, Na) hydrides synthesized by a high pressure technique and their hydrogen storage properties. Journal of Alloys and Compounds, 2011, 509, 1211-1216.	5.5	13
32	Converting rice husk activated carbon into active material for capacitor using three-dimensional porous current collector. Journal of Power Sources, 2011, 196, 10788-10790.	7.8	56
33	Reaction stoichiometry between TiCl3 and NaAlH4 in Ti-doped alanate for hydrogen storage: The fate of the titanium species. International Journal of Hydrogen Energy, 2011, 36, 634-638.	7.1	14
34	Investigation of Y ₆ Mn ₂₃ and YMn ₁₂ intermetallic alloys under high hydrogen pressure. Journal of Physics: Conference Series, 2010, 215, 012018.	0.4	1
35	Hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid. Journal of Power Sources, 2010, 195, 2877-2882.	7.8	133
36	Pyroxene LiVSi2O6 as an electrode material for Li-ion batteries. Journal of Power Sources, 2010, 195, 8322-8326.	7.8	12

Νοβυμικό Τακειςμι

#	Article	IF	CITATIONS
37	Hydrides of Laves phases intermetallic compounds synthesized under high hydrogen pressure. Solid State Ionics, 2010, 181, 306-310.	2.7	22
38	Micro/Nano-Structures and Hydrogen Absorption/Desorption Properties of Mg/Cu Super-Laminates. Materials Science Forum, 2010, 638-642, 1143-1147.	0.3	2
39	Binderless fabrication of amorphous RuO2 electrode for electrochemical capacitor using spark plasma sintering technique. Journal of Power Sources, 2009, 191, 684-687.	7.8	21
40	A theoretical interpretation of the pressure–composition isotherms of RNi5 (, Pr, Nd and Sm) systems based on statistical mechanics. Journal of Alloys and Compounds, 2009, 470, 360-364.	5.5	7
41	Investigation of micro-structural transition through disproportionation and recombination during hydrogenation and dehydrogenation in Mg/Cu super-laminates. Journal of Materials Science, 2008, 43, 3812-3816.	3.7	36
42	Downbeat positioning nystagmus is a common clinical feature despite variable phenotypes in an FHM1 family. Journal of Neurology, 2008, 255, 1541-1544.	3.6	15
43	Observation of helical water chains reversibly inlayed in magnesium imidazole-4,5-dicarboxylate. CrystEngComm, 2008, 10, 1175.	2.6	49
44	Hydrogen Storage Properties, Metallographic Structures and Phase Transitions of Mg-based Alloys Prepared by Super Lamination Technique. Materials Research Society Symposia Proceedings, 2008, 1128, 10401.	0.1	3
45	Effect of Ball-Milling on the Properties of Mg ₂ Cu Hydrogen Storage Alloy. Materials Transactions, 2008, 49, 2698-2701.	1.2	6
46	Change of Microstructure and Hydrogen Absorption Properties by Initial Activation in Mg/Cu Super-Laminates as Hydrogen Storage Materials. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 188-194.	0.4	4
47	Hydrogenation Characteristics of Mg Based Alloy Prepared by Super Lamination Technique. Materials Science Forum, 2007, 561-565, 1609-1612.	0.3	25
48	Comparison between Mg/Cu Super-Laminates and Mg ₂ Cu Powder in Microstructure and Hydrogen Storage Properties. Materials Science Forum, 2007, 561-565, 1581-1584.	0.3	0
49	Phase Transition of Mg/Pd Laminate Composites during Hydrogenation/Dehydrogenation. Materials Science Forum, 2007, 561-565, 1593-1596.	0.3	Ο
50	Hydrogen Storage Properties and Corresponding Phase Transformations of Mg/Pd Laminate Composites Prepared by a Repetitive-Rolling Method. Materials Transactions, 2007, 48, 2395-2398.	1.2	7
51	The Effect of Initial Activation on Microstructures of Mg/Cu Super-laminates and Hydrogen Absorption Properties. Materials Research Society Symposia Proceedings, 2007, 1042, 1.	0.1	1
52	XAFS Analysis of Pt and Pt-Ru Catalysts for PEFCs by In-Situ Measurements under Operating Conditions in the Fluorescence Mode. AIP Conference Proceedings, 2007, , .	0.4	2
53	Observation of hydrogen absorption/desorption reaction processes in Li–Mg–N–H system by in-situ X-ray diffractmetry. Journal of Alloys and Compounds, 2007, 430, 217-221.	5.5	16
54	Hydrogen storage properties of Mg/Cu and Mg/Pd laminate composites and metallographic structure. Journal of Alloys and Compounds, 2007, 446-447, 543-548.	5.5	80

NOBUHIKO TAKEICHI

#	Article	IF	CITATIONS
55	Activity Changes in Monkey Superior Colliculus During Saccade Adaptation. Journal of Neurophysiology, 2007, 97, 4096-4107.	1.8	59
56	Evaluation of nanometer-scale droplets in a ternary o/w microemulsion using SAXS and 129Xe NMR. Chemical Physics Letters, 2007, 441, 109-114.	2.6	7
57	High Pressure Hydrogen and Hydrogen Storage Materials. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2007, 17, 257-263.	0.0	3
58	In-Situ X-ray Diffraction Measurement for Pure Niobium Metal in High Temperature Hydrogen Atmosphere. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2006, 70, 467-472.	0.4	2
59	Relations between Microstructure of Mg/Cu Super-laminates and Kinetics of Hydrogen Absorption/desorption. Materials Research Society Symposia Proceedings, 2006, 971, 1.	0.1	1
60	Appearance of a Novel Pressure Plateau in RNi ₅ -H (R = Rare Earth) Systems. Materials Transactions, 2005, 46, 152-154.	1.2	11
61	Hydrogenation and dehydrogenation properties for DyNi5–H system. Journal of Alloys and Compounds, 2005, 389, 182-185.	5.5	2
62	Studies of – isotherms in RNi5–H (R: La, Pr, Nd, Sm, Gd, Tb and Dy) systems. Journal of Alloys and Compounds, 2005, 404-406, 47-50.	5.5	12
63	Hydrogenation properties and structural change of HfxZr7â^'xNi10 (). Journal of Alloys and Compounds, 2005, 404-406, 609-612.	5.5	8
64	Rational assembly of a 3D metal–organic framework for gas adsorption with predesigned cubic building blocks and 1D open channels. Chemical Communications, 2005, , 3526.	4.1	106
65	Hydrogenation of nanostructured graphite by mechanical grinding under hydrogen atmosphere. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 108, 134-137.	3.5	20
66	Systematic investigation on hydrogen storage properties of RNi5 (R: rare earth) intermetallic compounds with multi-plateau. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 108, 96-99.	3.5	28
67	Hydrogenation properties and structure of Ti–Cr alloy prepared by mechanical grinding. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 108, 100-104.	3.5	12
68	Re-examination of Zr7Ni10 single-phase region. Journal of Alloys and Compounds, 2004, 376, 268-274.	5.5	20
69	Structural Changes in RNi ₅ -H (R = Pr, Nd, Sm and Gd) Systems with Two Hydrogen Pressure Plateaux. Materials Transactions, 2004, 45, 2610-2613.	1.2	14
70	Hydrogenation and Dehydrogenation Properties of R _H Ni ₅ (R _H) Tj ETC	2qQ 0 0 rg	BT ₁ Overlock
71	"Hybrid hydrogen storage vesselâ€, a novel high-pressure hydrogen storage vessel combined with hydrogen storage material. International Journal of Hydrogen Energy, 2003, 28, 1121-1121.	7.1	51

72Phase transformation in Tiâ€"Cr alloys by mechanical grinding. Materials Letters, 2003, 57, 1395-1399.2.612

Νοβυμικό Τακειςμι

#	Article	IF	CITATIONS
73	Another unusual phenomenon for Zr7Ni10: structural change in hydrogen solid solution and its conditions. Journal of Alloys and Compounds, 2003, 360, 250-255.	5.5	17
74	Hydrogenation Properties of RNi ₅ (R: Rare Earth) Intermetallic Compounds with Multi Pressure Plateaux. Materials Transactions, 2003, 44, 1663-1666.	1.2	36
75	Hydrogenation of Body-Centered-Cubic Titanium-Chromium Alloys Prepared by Mechanical Grinding. Materials Transactions, 2002, 43, 2161-2164.	1.2	8
76	Evaluation of methods to improve reproducibility in charge/discharge measurements of metal hydride battery electrodes. Journal of Alloys and Compounds, 2002, 330-332, 771-775.	5.5	2
77	Hydrogen adsorption in carbonaceous materials–. Journal of Alloys and Compounds, 2002, 330-332, 666-669.	5.5	73
78	Hydrogenation characteristics of Ti2Ni and Ti4Ni2X (X=O, N, C). Journal of Alloys and Compounds, 2002, 330-332, 517-521.	5.5	22
79	Synthesis of CaNi1â^'xPdx (0.1≤â‰≇) alloys and hydrogenation properties of CaPd. Journal of Alloys and Compounds, 2002, 347, 231-238.	5.5	2
80	Atomic structure, electronic structure and electron transport properties of Ca–Mg–Ga amorphous alloys. Journal of Non-Crystalline Solids, 1999, 250-252, 805-810.	3.1	0
81	Electronic structure and electron transport properties of amorphous alloys. Journal of Physics Condensed Matter, 1998, 10, 10193-10206.	1.8	0
82	Development in the short- and medium-range structure in amorphous alloys. Journal of Physics Condensed Matter, 1998, 10, 10179-10192.	1.8	4
83	Theoretical studies of atomic structure and electronic structure in ternary amorphous Al - Cu - Y and Mg - Cu - Y alloys. Journal of Physics Condensed Matter, 1997, 9, 10145-10157.	1.8	2
84	Experimental studies of atomic structure, electronic structure, and the electronic transport mechanism in amorphous Al-Cu-Y and Mg-Cu-Y ternary alloys. Physical Review B, 1996, 54, 3200-3210.	3.2	13
85	Hydrogen Storage Properties of Mg-Al Alloy Prepared by Super Lamination Technique. Advanced Materials Research, 0, 26-28, 857-860.	0.3	30