Nobuhiko Takeichi

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/3962387/publications.pdf
Version: 2024-02-01

Indigo carmine: An organic crystal as a positive-electrode material for rechargeable sodium batteries.

Rational assembly of a 3D metalâ€"organic framework for gas adsorption with predesigned cubic
$4.1 \quad 106$
3 building blocks and 1D open channels. Chemical Communications, 2005, ,3526.
106

Na-ion capacitor using sodium pre-doped hard carbon and activated carbon. Electrochimica Acta, 2012,
$5 \quad$ Hydrogen storage properties of Mg/Cu and Mg/Pd laminate composites and metallographic structure.

6 Hydrogen adsorption in carbonaceous materialsâ€". Journal of Alloys and Compounds, 2002, 330-332, 666-669.
5.5

73
$7 \quad$ Activity Changes in Monkey Superior Colliculus During Saccade Adaptation. Journal of
$7 \quad$ Neurophysiology, 2007, 97, 4096-4107.
1.8

59

8 Converting rice husk activated carbon into active material for capacitor using three-dimensional porous current collector. Journal of Power Sources, 2011, 196, 10788-10790.

9 hydrogen storage material. International Journal of Hydrogen Energy, 2003, 28, 1121-1121.

10 Observation of helical water chains reversibly inlayed in magnesium imidazole-4,5-dicarboxylate.
CrystEngComm, 2008, 10, 1175.
2.6

49

11	Sulfone-Based Electrolyte Solutions for Rechargeable Magnesium Batteries Using 2,5-Dimethoxy-1,4-benzoquinone Positive Electrode. Journal of the Electrochemical Society, 2014, 161, A1315-A1320.	2.9	47
12	Organic positive-electrode material utilizing both an anion and cation: a benzoquinone-tetrathiafulvalene triad molecule, Q-TTF-Q, for rechargeable Li, Na , and K batteries. New Journal of Chemistry, 2019, 43, 1626-1631.	2.8	38
13	Hydrogenation Properties of $\mathrm{RNi}<\mathrm{SUB}>5<\mid \mathrm{SUB}>$ (R: Rare Earth) Intermetallic Compounds with Multi Pressure Plateaux. Materials Transactions, 2003, 44, 1663-1666.	1.2	36
14	Investigation of micro-structural transition through disproportionation and recombination during hydrogenation and dehydrogenation in $\mathrm{Mg} / \mathrm{Cu}$ super-laminates. Journal of Materials Science, 2008, 43, 3812-3816.	3.7	36
15	Improving the oxygen redox stability of NaCl -type cation disordered $\mathrm{Li}<$ sub $>2<\mid$ sub $>\mathrm{MnO}<$ sub $>3</$ sub $>$ in a composite structure of Li <sub $\rangle 2\langle \|$ sub $\rangle \mathrm{MnO}\langle$ sub $\rangle 3</$ sub \rangle and spinel-type LiMn<sub>2<\|sub>O₄. Journal of Materials Chemistry A, 2019, 7, 5381-5390.	10.3	33
16	Hydrogen Storage Properties of Mg-Al Alloy Prepared by Super Lamination Technique. Advanced Materials Research, 0, 26-28, 857-860.	0.3	30
17	Irreversible structural change of a spinel Li4Ti5O12 particle via Na insertion-extraction cycles of a sodium-ion battery. Electrochimica Acta, 2014, 148, 175-179.	5.2	30

Systematic investigation on hydrogen storage properties of RNi5 (R: rare earth) intermetallic Advanced Technology, 2004, 108, 96-99.

Hydrogenation Characteristics of Mg Based Alloy Prepared by Super Lamination Technique. Materials
Science Forum, 2007, 561-565, 1609-1612.

Hydrogenation characteristics of Ti 2 Ni and $\mathrm{Ti} 4 \mathrm{Ni} 2 \mathrm{X}(\mathrm{X}=\mathrm{O}, \mathrm{N}, \mathrm{C})$. Journal of Alloys and Compounds, 2002, 330-332, 517-521.

Hydrides of Laves phases intermetallic compounds synthesized under high hydrogen pressure. Solid
State lonics, 2010, 181, 306-310.

Spinel-Type Sodium Titanium Oxide: A Promising Sodium-Insertion Material of Sodium-Ion Batteries. ACS
Applied Energy Materials, 2019, 2, 4345-4353.

Anthraquinoneâ€Based Oligomer as a Long Cycleâ€kife Organic Electrode Material for Use in Rechargeable
Batteries. ChemPhysChem, 2019, 20, 967-971.

Binderless fabrication of amorphous RuO 2 electrode for electrochemical capacitor using spark plasma sintering technique. Journal of Power Sources, 2009, 191, 684-687.

Hydrogenation of nanostructured graphite by mechanical grinding under hydrogen atmosphere.
Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 108, 134-137.
3.5

20

26 Re-examination of Zr 7 Ni 10 single-phase region. Journal of Alloys and Compounds, 2004, 376, 268-274.

Electrochemical Property of Li-Mn Cation Disordered Li-Rich Li₂MnO₃with
Electrochemical Property of Li-Mn Cation Disordered Li-Rich Li<sub> $2</$ sub> MnO<su
NaCl Type Structure. Journal of the Electrochemical Society, 2018, 165, A291-A296.

Another unusual phenomenon for Zr 7 Ni 10 : structural change in hydrogen solid solution and its
conditions. Journal of Alloys and Compounds, 2003, 360, 250-255.

Spinel manganese oxide: A high capacity positive electrode material for the sodium ion battery.
Electrochimica Acta, 2016, 212, 458-464.

Observation of hydrogen absorption/desorption reaction processes in Liâ€"Mgâ€"Nâ€"H system by in-situ X-ray diffractmetry. Journal of Alloys and Compounds, 2007, 430, 217-221.

Rechargeable organic batteries using chloro-substituted naphthazarin derivatives as positive electrode materials. Journal of Materials Science, 2017, 52, 12401-12408.

Downbeat positioning nystagmus is a common clinical feature despite variable phenotypes in an FHM1 family. Journal of Neurology, 2008, 255, 1541-1544.

Structural Changes in $\mathrm{RNi}<\mathrm{SUB}>5</ \mathrm{SUB}>-\mathrm{H}(\mathrm{R}=\mathrm{Pr}, \mathrm{Nd}$, Sm and Gd) Systems with Two Hydrogen
Pressure Plateaux. Materials Transactions, 2004, 45, 2610-2613.

Reaction stoichiometry between TiCl 3 and NaAlH 4 in Ti-doped alanate for hydrogen storage: The fate of the titanium species. International Journal of Hydrogen Energy, 2011, 36, 634-638.

Hydrogen Absorption and Desorption Behavior of Magnesium Hydride: Incubation Period and Reaction
Mechanism. Materials Transactions, 2014, 55, 1161-1167.
1.2

14

Influence of the preparation methods on the electrochemical properties and structural changes of

39	Novel Mgâ€"Zrâ€"Aâ€"H (A=Li, Na) hydrides synthesized by a high pressure technique and their hydrogen storage properties. Journal of Alloys and Compounds, 2011, 509, 1211-1216.	5.5	13
40	Improvement of the Battery Performance of Indigo, an Organic Electrode Material, Using PEDOT/PSS with <scp>d-</scp>Sorbitol. ACS Omega, 2020, 5, 18565-18572.	3.5	13
41	Phase transformation in Tiâ€ "Cr alloys by mechanical grinding. Materials Letters, 2003, 57, 1395-1399.	2.6	12
42	Hydrogenation properties and structure of Tiâ€"Cr alloy prepared by mechanical grinding. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 108, 100-104.	3.5	12
43	Studies of â $€^{\prime \prime}$ isotherms in RNi5â€"H (R: La, Pr, Nd, Sm, Gd, Tb and Dy) systems. Journal of Alloys and Compounds, 2005, 404-406, 47-50.	5.5	12

Pyroxene LiVSi2O6 as an electrode material for Li-ion batteries. Journal of Power Sources, 2010, 195, 8322-8326.

Electrochemical In Situ Synthesis: A New Synthesis Route for Redox Active Manganese Oxides for

$$
49 \text { Rechargeable Sodium Ion Battery through Initial Charge Process. Journal of the Electrochemical }
$$

$$
2.9
$$

59	Analytical Measurements to Elucidate Structural Behavior of 2,5â€Dimethoxyâ€ 1,4 â €benzoquinone During Charge and Discharge. ChemSusChem, 2020, 13, 2354-2363.	6.8	5
60	Transport Properties of Electrolyte Solution Comprising LiPF\<sub\>6\</sub\>, Ethylene Carbonate, and Propylene Carbonate. Electrochemistry, 2021, 89, 439-446.	1.4	5
61	Development in the short- and medium-range structure in amorphous alloys. Journal of Physics Condensed Matter, 1998, 10, 10179-10192.	1.8	4
62	Change of Microstructure and Hydrogen Absorption Properties by Initial Activation in $\mathrm{Mg} / \mathrm{Cu}$ Super-Laminates as Hydrogen Storage Materials. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 188-194.	0.4	4
63	Local structure and electrochemical performances of sulfurized polyethylene glycol after heat treatment. Scientific Reports, 2020, 10, 16918.	3.3	4

64 Prepared by Super Lamination Technique. Materials Research Society Symposia Proceedings, 2008, 1128,
10401.
65 Face-centered-cubic yttrium trihydride high-pressure phase stabilized at ambient pressures by mechanical milling. Materialia, 2021, 15, 100956.
$2.7 \quad 3$

High Pressure Hydrogen and Hydrogen Storage Materials. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2007, 17, 257-263.
0.0

3

Theoretical studies of atomic structure and electronic structure in ternary amorphous $\mathrm{Al}-\mathrm{Cu}-\mathrm{Y}$ and
67 Mg - Cu - Y alloys. Journal of Physics Condensed Matter, 1997, 9, 10145-10157.
$1.8 \quad 2$

Evaluation of methods to improve reproducibility in charge/discharge measurements of metal hydride battery electrodes. Journal of Alloys and Compounds, 2002, 330-332, 771-775.
$5.5 \quad 2$

Synthesis of CaNilâ^’ x Pdx ($0.1 \mathrm{a} \%$ \%xâ\%ol) alloys and hydrogenation properties of CaPd. Journal of Alloys and
Compounds, 2002, 347, 231-238.
5.5

Hydrogenation and dehydrogenation properties for DyNi5â€"H system. Journal of Alloys and

Ca7Ge-type hydride Mg6VNaxHy (Oâ\%oxâ\%o1): High pressure synthesis, synchrotron X-ray analysis and hydrogen storage properties. Journal of Power Sources, 2012, 210, 158-162.

79	Micro/Nano-Structural Transition and Hydrogen Absorption Mechanism in Mg/Cu Super-Laminate Composites. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 79, 644-650.	0.4	1			
80	The origin of the highly crystallized face-centered cubic YH < mml:math xmlns:mml="http:/\|www.w3.org/1998/Math/MathML" display="inline" id="dle294" altimg="sil3.svg">mml:msub<mml:mrow \|>mml:mrowmml:mn3<\|mml:mn><	mml:mrow><	mml:msub><	mml:math>Âhigh-pressure phase when quenched to ambient condition. Materials Today Communications, 2022, 31, 103265.	1.9	1
81	Electronic structure and electron transport properties of amorphous alloys. Journal of Physics Condensed Matter, 1998, 10, 10193-10206.	1.8	0			
82	Atomic structure, electronic structure and electron transport properties of Caâ€"Mgâ€"Ga amorphous alloys. Journal of Non-Crystalline Solids, 1999, 250-252, 805-810.	3.1	0			
83	Comparison between $\mathrm{Mg} / \mathrm{Cu}$ Super-Laminates and $\mathrm{Mg}<$ sub $>2</$ sub>Cu Powder in Microstructure and Hydrogen Storage Properties. Materials Science Forum, 2007, 561-565, 1581-1584.	0.3	0			
84	Phase Transition of Mg/Pd Laminate Composites during Hydrogenation/Dehydrogenation. Materials Science Forum, 2007, 561-565, 1593-1596.	0.3	0			
85	Stability of Zirconium-Substituted Face-Centered Cubic Yttrium Hydride. Inorganic Chemistry, 2021, 60, 17715-17721.	4.0	0			

