Jarmila VinÅjovÃj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3962349/publications.pdf

Version: 2024-02-01

		136885	214721
111	2,928	32	47
papers	citations	h-index	g-index
115	115	115	3193
all docs	docs citations	times ranked	citing authors

Ιλαμιία Μινά:Ονά:

#	Article	IF	CITATIONS
1	Chitosan Derivatives with Antimicrobial, Antitumour and Antioxidant Activities - a Review. Current Pharmaceutical Design, 2011, 17, 3596-3607.	0.9	249
2	Synthesis and antimicrobial evaluation of new 2-substituted 5,7-di-tert-butylbenzoxazoles. Bioorganic and Medicinal Chemistry, 2006, 14, 5850-5865.	1.4	100
3	A new modification of anti-tubercular active molecules. Bioorganic and Medicinal Chemistry, 2007, 15, 2551-2559.	1.4	99
4	Salicylanilide derivatives block Mycobacterium tuberculosis through inhibition of isocitrate lyase and methionine aminopeptidase. Tuberculosis, 2012, 92, 434-439.	0.8	73
5	Antimicrobial activity of sulfonamides containing 5-chloro-2-hydroxybenzaldehyde and 5-chloro-2-hydroxybenzoic acid scaffold. European Journal of Medicinal Chemistry, 2012, 50, 433-440.	2.6	70
6	FT-IR, FT-Raman and DFT calculations of 4-chloro-2-(3,4-dichlorophenylcarbamoyl)phenyl acetate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 72, 547-553.	2.0	69
7	Salicylanilide Ester Prodrugs as Potential Antimicrobial Agents - a Review. Current Pharmaceutical Design, 2011, 17, 3494-3505.	0.9	68
8	Synthesis and antimycobacterial evaluation of substituted pyrazinecarboxamides. European Journal of Medicinal Chemistry, 2008, 43, 1105-1113.	2.6	61
9	Sulfadiazine Salicylaldehyde-Based Schiff Bases: Synthesis, Antimicrobial Activity and Cytotoxicity. Molecules, 2017, 22, 1573.	1.7	60
10	Highly Lipophilic Benzoxazoles with Potential Antibacterial Activity. Molecules, 2005, 10, 783-793.	1.7	59
11	New fluorine-containing hydrazones active against MDR-tuberculosis. European Journal of Medicinal Chemistry, 2011, 46, 4937-4945.	2.6	57
12	Substituted Pyrazinecarboxamides: Synthesis and Biological Evaluation. Molecules, 2006, 11, 242-256.	1.7	54
13	Prodrug Design of Phenolic Drugs. Current Pharmaceutical Design, 2010, 16, 2033-2052.	0.9	53
14	Salicylanilide carbamates: Promising antibacterial agents with high in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA). European Journal of Pharmaceutical Sciences, 2015, 77, 197-207.	1.9	50
15	New derivatives of salicylamides: Preparation and antimicrobial activity against various bacterial species. Bioorganic and Medicinal Chemistry, 2013, 21, 6574-6581.	1.4	48
16	Salicylanilide esters of N-protected amino acids as novel antimicrobial agents. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 348-351.	1.0	47
17	New antituberculotics originated from salicylanilides with promising in vitro activity against atypical mycobacterial strains. Bioorganic and Medicinal Chemistry, 2009, 17, 3572-3579.	1.4	46
18	Photosynthesis—Inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkylcarbamates. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4564-4567.	1.0	45

#	Article	IF	CITATIONS
19	Acetylcholinesterase-Inhibiting Activity of Salicylanilide N-Alkylcarbamates and Their Molecular Docking. Molecules, 2012, 17, 10142-10158.	1.7	44
20	Synthesis and biological evolution of hydrazones derived from 4-(trifluoromethyl)benzohydrazide. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 5185-5189.	1.0	41
21	Salicylanilide Acetates: Synthesis and Antibacterial Evaluation. Molecules, 2007, 12, 1-12.	1.7	40
22	Investigating Spectrum of Biological Activity of 4- and 5-Chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]benzamides. Molecules, 2011, 16, 2414-2430.	1.7	40
23	Concentration and solvent dependent SERS, DFT, MD simulations and molecular docking studies of a thioxothiazolidine derivative with antimicrobial properties. Journal of Molecular Liquids, 2021, 329, 115582.	2.3	40
24	4-Aminobenzoic Acid Derivatives: Converting Folate Precursor to Antimicrobial and Cytotoxic Agents. Biomolecules, 2020, 10, 9.	1.8	39
25	Salicylanilide carbamates: Antitubercular agents active against multidrug-resistant Mycobacterium tuberculosis strains. Bioorganic and Medicinal Chemistry, 2010, 18, 1054-1061.	1.4	38
26	New series of isoniazid hydrazones linked with electron-withdrawing substituents. European Journal of Medicinal Chemistry, 2011, 46, 5902-5909.	2.6	37
27	Spectroscopic investigations and computational study of 2â€[acetyl(4â€bromophenyl)carbamoyl]â€4â€chlorophenyl acetate. Journal of Raman Spectroscopy, 2010, 41, 707-716.	1.2	36
28	Advances in Mycobacterial Isocitrate Lyase Targeting and Inhibitors. Current Medicinal Chemistry, 2012, 19, 6126-6137.	1.2	36
29	Antifungal Activity of Salicylanilides and Their Esters with 4-(Trifluoromethyl)benzoic Acid. Molecules, 2012, 17, 9426-9442.	1.7	36
30	Antibacterial Activity of Salicylanilide 4-(Trifluoromethyl)-benzoates. Molecules, 2013, 18, 3674-3688.	1.7	36
31	Antiviral Activity of Substituted Salicylanilides - A Review. Mini-Reviews in Medicinal Chemistry, 2011, 11, 956-967.	1.1	35
32	Novel Cholinesterase Inhibitors Based on O-Aromatic N,N-Disubstituted Carbamates and Thiocarbamates. Molecules, 2016, 21, 191.	1.7	35
33	<i>In Vitro</i> Bactericidal Activity of 4- and 5-Chloro-2-hydroxy- <i>N</i> -[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA. BioMed Research International, 2015, 2015, 1-8.	0.9	34
34	Recent Advances on Isoniazide Derivatives. Anti-Infective Agents in Medicinal Chemistry, 2008, 7, 12-31.	0.6	32
35	New amino acid esters of salicylanilides active against MDR-TB and other microbes. European Journal of Medicinal Chemistry, 2010, 45, 6106-6113.	2.6	31
36	New lipophilic isoniazid derivatives and their 1,3,4-oxadiazole analogues: Synthesis, antimycobacterial activity and investigation of their mechanism of action. European Journal of Medicinal Chemistry, 2018, 151, 824-835.	2.6	31

#	Article	IF	CITATIONS
37	Antimicrobial activity of rhodanine-3-acetic acid derivatives. Bioorganic and Medicinal Chemistry, 2017, 25, 1839-1845.	1.4	29
38	Synthesis and biological activity of new salicylanilide N,N-disubstituted carbamates and thiocarbamates. Bioorganic and Medicinal Chemistry, 2014, 22, 4073-4082.	1.4	28
39	FTâ€IR, FTâ€Raman, and computational calculations of 4â€chloroâ€2â€(3â€chlorophenyl carbamoyl)phenyl aceta Journal of Raman Spectroscopy, 2009, 40, 2176-2186.	te. 1:2	27
40	Salicylanilide N-monosubstituted carbamates: Synthesis and in vitro antimicrobial activity. Bioorganic and Medicinal Chemistry, 2016, 24, 1322-1330.	1.4	26
41	Triclosan and its derivatives as antimycobacterial active agents. European Journal of Pharmaceutical Sciences, 2018, 114, 318-331.	1.9	26
42	Combating highly resistant emerging pathogen Mycobacterium abscessus and Mycobacterium tuberculosis with novel salicylanilide esters and carbamates. European Journal of Medicinal Chemistry, 2015, 101, 692-704.	2.6	25
43	Synthesis and in vitro evaluation of novel rhodanine derivatives as potential cholinesterase inhibitors. Bioorganic Chemistry, 2016, 68, 23-29.	2.0	24
44	Sulphur-Containing Heterocycles as Antimycobacterial Agents: Recent Advances in Thiophene and Thiadiazole Derivatives. Current Topics in Medicinal Chemistry, 2016, 16, 2921-2952.	1.0	24
45	Salicylanilide pyrazinoates inhibit in vitro multidrug-resistant Mycobacterium tuberculosis strains, atypical mycobacteria and isocitrate lyase. European Journal of Pharmaceutical Sciences, 2014, 53, 1-9.	1.9	23
46	DFT, SERS-concentration and solvent dependent and docking studies of a bioactive benzenesulfonamide derivative. Journal of Molecular Structure, 2021, 1228, 129680.	1.8	23
47	Effect of alaptide, its analogues and oxiracetam on memory for an elevated plus-maze in mice. European Journal of Pharmacology, 1996, 314, 1-7.	1.7	21
48	Salicylanilide esterification: unexpected formation of novel seven-membered rings. Tetrahedron Letters, 2006, 47, 5007-5011.	0.7	21
49	Antimycobacterial Activity of Quaternary Pyridinium Salts and Pyridinium N-oxides - Review. Current Pharmaceutical Design, 2012, 19, 1343-1355.	0.9	21
50	FTâ€IR, FTâ€Raman and DFT calculations of the salicylanilide derivate 4â€chloroâ€2â€(4â€bromophenylcarbamoyl)phenyl acetate. Journal of Raman Spectroscopy, 2009, 40, 1211-122	23. ^{1.2}	20
51	Synthesis and inÂvitro antimycobacterial and isocitrate lyase inhibition properties of novel 2-methoxy-2′-hydroxybenzanilides, their thioxo analogues and benzoxazoles. European Journal of Medicinal Chemistry, 2012, 56, 108-119.	2.6	20
52	Spectroscopic investigations, concentration dependent SERS, and molecular docking studies of a benzoic acid derivative. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 248, 119265.	2.0	20
53	Salicylanilide diethyl phosphates as cholinesterases inhibitors. Bioorganic Chemistry, 2015, 58, 48-52.	2.0	19
54	Concentration dependent SERS, DFT and molecular docking studies of a ureido derivative with antitubercular properties. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 249, 119329.	2.0	19

#	Article	IF	CITATIONS
55	InÂvitro biological evaluation of new antimycobacterial salicylanilide-tuftsin conjugates. European Journal of Medicinal Chemistry, 2017, 133, 152-173.	2.6	18
56	<i>In Vitro</i> Antibacterial and Antifungal Activity of Salicylanilide Benzoates. Scientific World Journal, The, 2012, 2012, 1-7.	0.8	17
57	Vibrational spectroscopic investigations and computational study of 5-Chloro-2-[4-(trifluoromethyl)phenylcarbamoyl]phenyl acetate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 112, 161-168.	2.0	17
58	N-Substituted 2-Isonicotinoylhydrazinecarboxamides — New Antimycobacterial Active Molecules. Molecules, 2014, 19, 3851-3868.	1.7	17
59	Salicylanilide diethyl phosphates: Synthesis, antimicrobial activity and cytotoxicity. Bioorganic and Medicinal Chemistry, 2014, 22, 728-737.	1.4	16
60	Synthesis and in vitro biological evaluation of 2-(phenylcarbamoyl)phenyl 4-substituted benzoates. Bioorganic and Medicinal Chemistry, 2015, 23, 868-875.	1.4	16
61	Cellular Internalization and Inhibition Capacity of New Anti-Glioma Peptide Conjugates: Physicochemical Characterization and Evaluation on Various Monolayer- and 3D-Spheroid-Based <i>in Vitro</i> Platforms. Journal of Medicinal Chemistry, 2021, 64, 2982-3005.	2.9	16
62	Novel salicylanilides from 4,5-dihalogenated salicylic acids: Synthesis, antimicrobial activity and cytotoxicity. Bioorganic and Medicinal Chemistry, 2017, 25, 1524-1532.	1.4	15
63	Design, synthesis and antimycobacterial activity of hybrid molecules combining pyrazinamide with a 4-phenylthiazol-2-amine scaffold. MedChemComm, 2018, 9, 685-696.	3.5	15
64	2-Hydroxy-N-phenylbenzamides and Their Esters Inhibit Acetylcholinesterase and Butyrylcholinesterase. Biomolecules, 2019, 9, 698.	1.8	15
65	Hydrazones of 4-(Trifluoromethyl)benzohydrazide as New Inhibitors of Acetyl- and Butyrylcholinesterase. Molecules, 2021, 26, 989.	1.7	15
66	DFT, molecular docking and SERS (concentration and solvent dependant) investigations of a methylisoxazole derivative with potential antimicrobial activity. Journal of Molecular Structure, 2021, 1232, 130034.	1.8	15
67	Antimycobacterial Activity of Salicylanilide Benzenesulfonates. Molecules, 2012, 17, 492-503.	1.7	14
68	Antimycobacterial Assessment of Salicylanilide Benzoates including Multidrug-Resistant Tuberculosis Strains. Molecules, 2012, 17, 12812-12820.	1.7	14
69	Phenolic N-monosubstituted carbamates: Antitubercular and toxicity evaluation of multi-targeting compounds. European Journal of Medicinal Chemistry, 2019, 181, 111578.	2.6	14
70	Synthetic Route for the Preparation of 2-Hydroxy- <i>N</i> -[1-(2-hydroxyphenylamino)-1-oxoalkan-2-yl]benzamides. ACS Combinatorial Science, 2010, 12, 414-416.	3.3	13
71	Novel Sulfamethoxazole Ureas and Oxalamide as Potential Antimycobacterial Agents. Molecules, 2017, 22, 535.	1.7	13
72	Investigation of salicylanilide and 4-chlorophenol-based N-monosubstituted carbamates as potential inhibitors of acetyl- and butyrylcholinesterase. Bioorganic Chemistry, 2018, 80, 668-673	2.0	12

#	Article	IF	CITATIONS
73	Design and synthesis of 2-(2-isonicotinoylhydrazineylidene)propanamides as InhA inhibitors with high antitubercular activity. European Journal of Medicinal Chemistry, 2021, 223, 113668.	2.6	12
74	In Vitro Antibacterial and Antifungal Activity of Salicylanilide Pyrazine-2- carboxylates. Medicinal Chemistry, 2012, 8, 732-741.	0.7	11
75	Preparation, in vitro evaluation and molecular modelling of pyridinium–quinolinium/isoquinolinium non-symmetrical bisquaternary cholinesterase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6663-6666.	1.0	11
76	Diethyl 2-(Phenylcarbamoyl)phenyl Phosphorothioates: Synthesis, Antimycobacterial Activity and Cholinesterase Inhibition. Molecules, 2014, 19, 7152-7168.	1.7	11
77	Iodinated 1,2-diacylhydrazines, benzohydrazide-hydrazones and their analogues as dual antimicrobial and cytotoxic agents. Bioorganic and Medicinal Chemistry, 2021, 41, 116209.	1.4	11
78	Novel propargylamine-based inhibitors of cholinesterases and monoamine oxidases: Synthesis, biological evaluation and docking study. Bioorganic Chemistry, 2021, 116, 105301.	2.0	11
79	Synthesis and inÂvitro antimycobacterial activity of 2-methoxybenzanilides and their thioxo analogues. European Journal of Medicinal Chemistry, 2012, 56, 387-395.	2.6	10
80	Sulfonamide-salicylaldehyde imines active against methicillin- and trimethoprim/sulfonamide-resistant <i>Staphylococci</i> . Future Medicinal Chemistry, 2021, 13, 1945-1962.	1.1	10
81	Vibrational spectroscopic studies and computational calculations of 5-chloro-2-(3-chlorophenylcarbamoyl)phenylacetate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 89, 308-316.	2.0	9
82	Novel derivatives of nitro-substituted salicylic acids: Synthesis, antimicrobial activity and cytotoxicity. Bioorganic and Medicinal Chemistry, 2015, 23, 7292-7301.	1.4	9
83	Novel Iodinated Hydrazide-hydrazones and their Analogues as Acetyl- and Butyrylcholinesterase Inhibitors. Current Topics in Medicinal Chemistry, 2020, 20, 2106-2117.	1.0	9
84	Antimycobacterial derivatives of tetrazole. Collection of Czechoslovak Chemical Communications, 1991, 56, 2389-2394.	1.0	8
85	An unprecedented rearrangement of salicylanilide derivatives: imidazolinone intermediate formation. Tetrahedron Letters, 2010, 51, 23-26.	0.7	8
86	Crystallization Products of Risedronate with Carbohydrates and Their Substituted Derivatives. Molecules, 2011, 16, 3740-3760.	1.7	8
87	In vitro activity of salicylamide derivatives against vancomycin-resistant enterococci. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2184-2188.	1.0	8
88	N-Alkyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides and Their Analogues: Synthesis and Multitarget Biological Activity. Molecules, 2020, 25, 2268.	1.7	8
89	5-Alkylamino-N-phenylpyrazine-2-carboxamides: Design, Preparation, and Antimycobacterial Evaluation. Molecules, 2020, 25, 1561.	1.7	8
90	Spectroscopic investigations, concentration dependent SERS, and molecular docking studies of a hydroxybenzylidene derivative. Journal of Biomolecular Structure and Dynamics, 2022, 40, 6952-6964.	2.0	8

#	Article	IF	CITATIONS
91	Cytotoxicity decreasing effect and antimycobacterial activity of chitosan conjugated with antituberculotic drugs. Carbohydrate Polymers, 2011, 83, 1901-1907.	5.1	7
92	Salicylanilide Diethyl Phosphates as Potential Inhibitors of Some Mycobacterial Enzymes. Scientific World Journal, The, 2014, 2014, 1-6.	0.8	7
93	Synthesis and Antimycobacterial and Photosynthesis-Inhibiting Evaluation of 2-[(<i>E</i>)-2-Substituted-ethenyl]-1,3-benzoxazoles. Scientific World Journal, The, 2014, 2014, 1-11.	0.8	7
94	Synthesis and antimicrobial activity of sulphamethoxazole-based ureas and imidazolidine-2,4,5-triones. Chemical Papers, 2015, 69, .	1.0	7
95	Conformations, equilibrium thermodynamics and rotational barriers of secondary thiobenzanilides. Tetrahedron, 2016, 72, 2072-2083.	1.0	7
96	Synthesis of readily available fluorophenylalanine derivatives and investigation of their biological activity. Bioorganic Chemistry, 2017, 71, 244-256.	2.0	7
97	Optimizing the structure of (salicylideneamino)benzoic acids: Towards selective antifungal and anti-staphylococcal agents. European Journal of Pharmaceutical Sciences, 2021, 159, 105732.	1.9	7
98	Synthesis and Antiproliferative Activity of Spirocyclic Cyclodipeptides, Derivatives of 1-Amino-1-cyclobutanecarboxylic Acid. Collection of Czechoslovak Chemical Communications, 1993, 58, 2987-2993.	1.0	7
99	Novel Aminoguanidine Hydrazone Analogues: From Potential Antimicrobial Agents to Potent Cholinesterase Inhibitors. Pharmaceuticals, 2021, 14, 1229.	1.7	6
100	Host cell targeting of novel antimycobacterial 4-aminosalicylic acid derivatives with tuftsin carrier peptides. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 174, 111-130.	2.0	5
101	Spirocyclic Dipeptides of 1-Amino-1-cyclohexanecarboxylic Acid. Collection of Czechoslovak Chemical Communications, 1994, 59, 195-202.	1.0	4
102	Synthesis, Biological Evaluation, and In Silico Modeling of N-Substituted Quinoxaline-2-Carboxamides. Pharmaceuticals, 2021, 14, 768.	1.7	4
103	Cyclic Dipeptides with 1-Aminocyclopropane-1-carboxylic Acid. Collection of Czechoslovak Chemical Communications, 1997, 62, 941-947.	1.0	4
104	Investigation of Potential Inhibitors of Chorismate-Utilizing Enzymes. Current Medicinal Chemistry, 2015, 22, 1383-1399.	1.2	4
105	N-[3,5-Bis(trifluoromethyl)phenyl]-5-bromo-2-hydroxybenzamide Analogues: Novel Acetyl- and Butyrylcholinesterase Inhibitors. Current Topics in Medicinal Chemistry, 2020, 20, 2094-2105.	1.0	4
106	Study of Stability of New Mutual Prodrugs with Antimycobacterial Activity. Current Organic Chemistry, 2008, 12, 667-674.	0.9	3
107	5-Aryl-1,3,4-oxadiazol-2-amines Decorated with Long Alkyl and Their Analogues: Synthesis, Acetyl- and Butyrylcholinesterase Inhibition and Docking Study. Pharmaceuticals, 2022, 15, 400.	1.7	3
108	5,7-Di-tert-butyl-2-(2-pyridyl)benzo[d]oxazole. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o2802-o2803.	0.2	2

#	Article	IF	CITATIONS
109	Design and Synthesis of Highly Active Antimycobacterial Mutual Esters of 2-(2-Isonicotinoylhydrazineylidene)propanoic Acid. Pharmaceuticals, 2021, 14, 1302.	1.7	2
110	Antistaphylococcal Activity of Novel Salicylanilide Derivatives. Current Drug Discovery Technologies, 2012, 9, 39-47.	0.6	1
111	Substituted N-phenylitaconamides as inhibitors of mycobacteria and mycobacterial isocitrate lyase. European Journal of Pharmaceutical Sciences, 2022, 176, 106252.	1.9	1