Xiang-Wen Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3962256/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Boosting Polysulfide Catalytic Conversion and Facilitating Li ⁺ Transportation by Ionâ€Selective COFs Composite Nanowire for Lïi£¿S Batteries. Small, 2022, 18, e2106679.	10.0	29
2	Singlet oxygen and dioxygen bond cleavage in the aprotic lithium-oxygen battery. Joule, 2022, 6, 185-192.	24.0	41
3	Solid-state lithium battery cathodes operating at low pressures. Joule, 2022, 6, 636-646.	24.0	42
4	Achieving Ultrahighâ€Rate Planar and Dendriteâ€Free Zinc Electroplating for Aqueous Zinc Battery Anodes. Advanced Materials, 2022, 34, e2202552.	21.0	88
5	Revealing the Role of Fluorideâ€Rich Battery Electrode Interphases by Operando Transmission Electron Microscopy. Advanced Energy Materials, 2021, 11, 2003118.	19.5	54
6	Elevating Energy Density for Sodium-Ion Batteries through Multielectron Reactions. Nano Letters, 2021, 21, 2281-2287.	9.1	54
7	Nonporous Gel Electrolytes Enable Long Cycling at High Current Density for Lithium-Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 14258-14266.	8.0	29
8	Improving the True Cycling of Redox Mediatorsâ€assisted Liâ€O ₂ Batteries. Energy and Environmental Materials, 2021, 4, 201-207.	12.8	9
9	Stabilizing the Na/Na3Zr2Si2PO12 interface through intrinsic feature regulation of Na3Zr2Si2PO12. Cell Reports Physical Science, 2021, 2, 100478.	5.6	17
10	Dual carbon-hosted Co-N3 enabling unusual reaction pathway for efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2021, 297, 120390.	20.2	46
11	Carbon-emcoating architecture boosts lithium storage of Nb2O5. Science China Materials, 2021, 64, 1071-1086.	6.3	7
12	The Interface between Li6.5La3Zr1.5Ta0.5O12 and Liquid Electrolyte. Joule, 2020, 4, 101-108.	24.0	81
13	Conductive Polymer Coated Cathodes in Li–O ₂ Batteries. ACS Applied Energy Materials, 2020, 3, 951-956.	5.1	10
14	Thermodynamic Understanding of Li-Dendrite Formation. Joule, 2020, 4, 1864-1879.	24.0	252
15	Current-Density-Dependent Electroplating in Ca Electrolytes: From Globules to Dendrites. ACS Energy Letters, 2020, 5, 2283-2290.	17.4	44
16	Interlaced Pd–Ag nanowires rich in grain boundary defects for boosting oxygen reduction electrocatalysis. Nanoscale, 2020, 12, 5368-5373.	5.6	35
17	Three Electron Reversible Redox Reaction in Sodium Vanadium Chromium Phosphate as a Highâ€Energyâ€Density Cathode for Sodiumâ€ion Batteries. Advanced Functional Materials, 2020, 30, 1908680.	14.9	85
18	Upgrading Traditional Organic Electrolytes toward Future Lithium Metal Batteries: A Hierarchical Nano-SiO ₂ -Supported Gel Polymer Electrolyte. ACS Energy Letters, 2020, 5, 1681-1688.	17.4	85

XIANG-WEN GAO

#	Article	IF	CITATIONS
19	Dental Resin Monomer Enables Unique NbO ₂ /Carbon Lithiumâ€ion Battery Negative Electrode with Exceptional Performance. Advanced Functional Materials, 2019, 29, 1904961.	14.9	26
20	Enhanced Liâ€O ₂ Battery Performance in a Binary "Liquid Teflon―and Dual Redox Mediators. Advanced Materials Technologies, 2019, 4, 1800645.	5.8	13
21	The Rechargeable Aprotic Lithium-Oxygen Batteries. ECS Meeting Abstracts, 2019, , .	0.0	Ο
22	Kinetics of lithium peroxide oxidation by redox mediators and consequences for the lithium–oxygen cell. Nature Communications, 2018, 9, 767.	12.8	93
23	High capacity surface route discharge at the potassium-O2 electrode. Journal of Electroanalytical Chemistry, 2018, 819, 542-546.	3.8	21
24	Plating and stripping calcium in an organicÂelectrolyte. Nature Materials, 2018, 17, 16-20.	27.5	273
25	Plating and Stripping Calcium at Room Temperature. ECS Meeting Abstracts, 2018, , .	0.0	0
26	The Rechargeable Aprotic Lithium-oxygen Battery. ECS Meeting Abstracts, 2018, , .	0.0	0
27	Phenol atalyzed Discharge in the Aprotic Lithiumâ€Oxygen Battery. Angewandte Chemie - International Edition, 2017, 56, 6539-6543.	13.8	55
28	Phenol atalyzed Discharge in the Aprotic Lithiumâ€Oxygen Battery. Angewandte Chemie, 2017, 129, 6639-6643.	2.0	24
29	A rechargeable lithium–oxygen battery with dual mediators stabilizing the carbon cathode. Nature Energy, 2017, 2, .	39.5	238
30	Promoting solution phase discharge in Li–O2 batteries containing weakly solvating electrolyteÂsolutions. Nature Materials, 2016, 15, 882-888.	27.5	446
31	A new single-ion polymer electrolyte based on polyvinyl alcohol for lithium ion batteries. Electrochimica Acta, 2013, 87, 113-118.	5.2	194
32	Nanoporous LiMn2O4 spinel prepared at low temperature as cathode material for aqueous supercapacitors. Journal of Power Sources, 2013, 242, 560-565.	7.8	57
33	A hybrid of V2O5 nanowires and MWCNTs coated with polypyrrole as an anode material for aqueous rechargeable lithium batteries with excellent cycling performance. Journal of Materials Chemistry, 2012, 22, 20143.	6.7	141
34	A single-ion polymer electrolyte based on boronate for lithium ion batteries. Electrochemistry Communications, 2012, 22, 29-32.	4.7	79
35	Core–Shell Structure of Polypyrrole Grown on V ₂ O ₅ Nanoribbon as High Performance Anode Material for Supercapacitors. Advanced Energy Materials, 2012, 2, 950-955.	19.5	469
36	Competitive Oxygen Reduction Pathways to Superoxide and Peroxide during Sodiumâ€Oxygen Battery Discharge. Batteries and Supercaps, 0, , .	4.7	2