Xiaolu Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3962176/publications.pdf

Version: 2024-02-01

1162889 1058333 28 217 8 14 citations h-index g-index papers 28 28 28 247 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A review of regulated self-organizing approaches for tissue regeneration. Progress in Biophysics and Molecular Biology, 2021, 167, 63-78.	1.4	5
2	Spatial micro-variation of 3D hydrogel stiffness regulates the biomechanical properties of hMSCs. Biofabrication, 2021, 13, 035051.	3.7	10
3	Cell Migration Regulated by Spatially Controlled Stiffness inside Compositionâ€Tunable Threeâ€Dimensional Dextran Hydrogels. Advanced Materials Interfaces, 2021, 8, 2100494.	1.9	6
4	Quantitatively Designed Cross-Linker-Clustered Maleimide–Dextran Hydrogels for Rationally Regulating the Behaviors of Cells in a 3D Matrix. ACS Applied Bio Materials, 2020, 3, 5759-5774.	2.3	8
5	Numerical Study on the Flow and Heat Transfer Coupled in a Rectangular Mini-Channel by Finite Element Method for Industrial Micro-Cooling Technologies. Fluids, 2020, 5, 151.	0.8	3
6	Characterization and Analysis of Collective Cellular Behaviors in 3D Dextran Hydrogels with Homogenous and Clustered RGD Compositions. Materials, 2019, 12, 3391.	1.3	13
7	Graphene-Flakes Based Microdevices for Detecting Microlitre Liquid Containing Heavy Metal Ions with Low Concentrations. , 2019, , .		0
8	Turing Instability-Driven Biofabrication of Branching Tissue Structures: A Dynamic Simulation and Analysis Based on the Reaction–Diffusion Mechanism â€. Micromachines, 2018, 9, 109.	1.4	8
9	Directing three-dimensional multicellular morphogenesis by self-organization of vascular mesenchymal cells in hyaluronic acid hydrogels. Journal of Biological Engineering, 2017, 11, 12.	2.0	16
10	Study on a 3D Hydrogel-Based Culture Model for Characterizing Growth of Fibroblasts under Viral Infection and Drug Treatment. SLAS Discovery, 2017, 22, 626-634.	1.4	14
11	Design of a micro manipulation device for cell microinjection. Microsystem Technologies, 2017, 23, 2823-2832.	1.2	3
12	Theoretically Evaluating the Electric Property of Electric Double Layer at Electrode/Electrolyte Interfaces with Heterogeneous Dielectric Properties., 2017,,.		0
13	Hollow spheroid formation by cells at the mechanical interface of hyaluronic acid hydrogels in three dimensions. , 2017, , .		O
14	Theoretically assessing electric double layer with heterogeneous dielectric properties by considering the steric effect of ions*., 2017 ,,.		0
15	4D Biofabrication of Branching Multicellular Structures: A Morphogenesis Simulation Based on Turing's Reaction-Diffusion Dynamics. IOP Conference Series: Materials Science and Engineering, 2017, 280, 012018.	0.3	1
16	Simulation for tubular and spherical structure formation via self- organization of vascular mesenchymal cells in three dimensions. , $2016, , .$		1
17	In-silico constructing three-dimensional hollow structure via self-organization of vascular mesenchymal cells. , 2016, , .		2
18	Three dimensional tubular structure self-assembled by vascular mesenchymal cells at stiffness interfaces of hydrogels. Biomedicine and Pharmacotherapy, 2016, 83, 1203-1211.	2.5	13

#	Article	IF	CITATIONS
19	Manipulation of Self-Assembled Microparticle Chains by Electroosmotic Flow Assisted Electrorotation in an Optoelectronic Device. Micromachines, 2015, 6, 1387-1405.	1.4	5
20	Directed transport and location-designated rotation of nanowires using ac electric fields. Microfluidics and Nanofluidics, 2014, 16, 237-246.	1.0	3
21	Tissue morphology controlled by micropatterning and self-assembly of vascular mesenchymal cells. , 2013, , .		1
22	Directing tissue morphogenesis via self-assembly of vascular mesenchymal cells. Biomaterials, 2012, 33, 9019-9026.	5.7	39
23	Dynamics simulation of positioning and assembling multi-microparticles utilizing optoelectronic tweezers. Microfluidics and Nanofluidics, 2012, 12, 529-544.	1.0	15
24	Electrode-rail dielectrophoretic assembly effect: formation of single curvilinear particle-chains on spiral microelectrodes. Microfluidics and Nanofluidics, 2010, 9, 981-988.	1.0	7
25	Experimental study on filtering, transporting, concentrating and focusing of microparticles based on optically induced dielectrophoresis. Science China Technological Sciences, 2010, 53, 2388-2396.	2.0	9
26	Frequency-dependent behaviors of individual microscopic particles in an optically induced dielectrophoresis device. Biomicrofluidics, 2010, 4, 013202.	1.2	30
27	Numerical Analysis of the Mechanism of a Novel Microchip Based on Dielectrophoresis for Measuring Dielectric Parameters of Cells. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2009, 45, 197.	0.7	5
28	Microscopic Particle Manipulation via Optoelectronic Devices., 0,,.		0