
Guoyao Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3962094/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Numerical and experimental investigations on a regenerative static thermomagnetic generator for low-grade thermal energy recovery. Applied Energy, 2022, 311, 118585.	10.1	7
2	A novel thermoacoustically-driven liquid metal magnetohydrodynamic generator for future space power applications. Energy Conversion and Management, 2022, 258, 115503.	9.2	16
3	Multi-method modeling to predict the onset conditions and resonance of the piezo coupled thermoacoustic engine. Journal of the Acoustical Society of America, 2022, 151, 4180-4195.	1.1	4
4	Dynamic and thermodynamic characterization of a resonance tube-coupled free-piston Stirling engine-based combined cooling and power system. Applied Energy, 2022, 322, 119437.	10.1	12
5	Study on a novel looped heat-driven thermoacoustic refrigerator with direct-coupling configuration for room temperature cooling. International Journal of Refrigeration, 2021, 123, 180-188.	3.4	16
6	Thermoacoustically driven liquid-metal-based triboelectric nanogenerator: A thermal power generator without solid moving parts. Applied Physics Letters, 2021, 118, .	3.3	11
7	A review of Stirling-engine-based combined heat and power technology. Applied Energy, 2021, 294, 116965.	10.1	51
8	A combined cooling and power cogeneration system by coupling duplex free-piston stirling cycles and a linear alternator. International Journal of Refrigeration, 2020, 118, 146-149.	3.4	18
9	Parametric study of a free-piston Stirling cryocooler capable of providing 350ÂW cooling power at 80ÂK. Applied Thermal Engineering, 2020, 174, 115101.	6.0	15
10	A high-efficiency free-piston Stirling cooler with 350 W cooling capacity at 80 K. Energy Procedia, 2019, 158, 4416-4422.	1.8	2
11	A free-piston Stirling generator integrated with a parabolic trough collector for thermal-to-electric conversion of solar energy. Applied Energy, 2019, 242, 1248-1258.	10.1	39
12	A looped heat-driven thermoacoustic refrigeration system with direct-coupling configuration for room temperature cooling. Science Bulletin, 2019, 64, 8-10.	9.0	26
13	Acoustic field characteristics of a free-piston Stirling cryocooler with large cooling capacity at liquid nitrogen temperature. Applied Thermal Engineering, 2019, 147, 324-335.	6.0	10
14	Design and Combustion Characteristic Analysis of Free Piston Stirling Engine External Combustion System. Journal of Shanghai Jiaotong University (Science), 2018, 23, 50-55.	0.9	4
15	Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system. Applied Energy, 2018, 226, 522-533.	10.1	83
16	A thermoacoustic Stirling electrical generator for cold exergy recovery of liquefied nature gas. Applied Energy, 2018, 226, 389-396.	10.1	26
17	Development of a 5 kW traveling-wave thermoacoustic electric generator. Applied Energy, 2017, 185, 1355-1361.	10.1	94
18	Theoretical analysis of two coupling modes of a 300-Hz three-stage thermoacoustically driven cryocooler system at liquid nitrogen temperature range. Applied Energy, 2017, 185, 2134-2141.	10.1	11

GUOYAO YU

#	Article	IF	CITATIONS
19	Experimental validation and numeric optimization of a resonance tube-coupled duplex Stirling cooler. Applied Energy, 2017, 207, 604-612.	10.1	31
20	Thermoacoustically driven triboelectric nanogenerator: Combining thermoacoustics and nanoscience. Applied Physics Letters, 2017, 111, .	3.3	11
21	A Resonance Tube Coupled Duplex Stirling Cooler. Energy Procedia, 2017, 105, 5140-5146.	1.8	2
22	A Novel Multi-stage Looped Thermoacoustic Heat Engine Using Assembly of Elastic Membrane and a Solid Mass. Energy Procedia, 2017, 105, 2028-2032.	1.8	2
23	Study on a high capacity two-stage free piston Stirling cryocooler working around 30 K. Cryogenics, 2016, 80, 193-198.	1.7	21
24	A novel heat-driven thermoacoustic natural gas liquefaction system. Part I: Coupling between refrigerator and linear motor. Energy, 2016, 117, 523-529.	8.8	14
25	Numerical investigation on a 300Hz pulse tube cryocooler driven by a three-stage traveling-wave thermoacoustic heat engine. Cryogenics, 2015, 71, 68-75.	1.7	13
26	Numerical Investigation on a 300Hz Pulse Tube Cryocooler Driven by a Double-acting Thermoacoustic Heat Engine. Energy Procedia, 2015, 75, 1484-1489.	1.8	0
27	Performance of a 260 Hz pulse tube cooler with metal fiber as the regenerator material. , 2014, , .		0
28	Development of a 3 kW double-acting thermoacoustic Stirling electric generator. Applied Energy, 2014, 136, 866-872.	10.1	58
29	Study on energy conversion characteristics of a high frequency standing-wave thermoacoustic heat engine. Applied Energy, 2013, 111, 1147-1151.	10.1	35
30	Design of a large-capacity multi-piston pulse tube cryocooler. AIP Conference Proceedings, 2012, , .	0.4	2
31	Thermoacoustic model of a modified free piston Stirling engine with a thermal buffer tube. Applied Energy, 2012, 90, 266-270.	10.1	26
32	Advances in a 300Hz thermoacoustic cooler system working within liquid nitrogen temperature range. Cryogenics, 2010, 50, 472-475.	1.7	10
33	CFD simulation of a 300Hz thermoacoustic standing wave engine. Cryogenics, 2010, 50, 615-622.	1.7	50
34	Influence of acoustic pressure amplifier tube on a 300 Hz thermoacoustically driven pulse tube cooler. Journal of Applied Physics, 2010, 108, 074905.	2.5	5
35	A 300 Hz high frequency thermoacoustically driven pulse tube cooler. Science Bulletin, 2008, 53, 1270-1271.	9.0	4
36	300Hz thermoacoustically driven pulse tube cooler for temperature below 100K. Applied Physics Letters, 2007, 90, 024104.	3.3	22

#	Article	IF	CITATIONS
37	A simple method to determine the frequency of engine-included thermoacoustic systems. Cryogenics, 2006, 46, 804-808.	1.7	22