Zhendong Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3962070/publications.pdf

Version: 2024-02-01

304602 377752 1,251 37 22 34 h-index citations g-index papers 38 38 38 1473 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Heterologous overexpression of StERF3 triggers cell death in Nicotiana benthamiana. Plant Science, 2022, 315, 111149.	1.7	4
2	Potato StLecRK-IV.1 negatively regulates late blight resistance by affecting the stability of a positive regulator StTET8. Horticulture Research, 2022, 9 , .	2.9	3
3	A <i>Phytophthora /i> effector promotes homodimerization of host transcription factor StKNOX3 to enhance susceptibility. Journal of Experimental Botany, 2022, 73, 6902-6915.</i>	2.4	9
4	Evolutionarily distinct resistance proteins detect a pathogen effector through its association with different host targets. New Phytologist, 2021, 232, 1368-1381.	3 . 5	6
5	Phytophthora infestans RXLR effector Pi04089 perturbs diverse defense-related genes to suppress host immunity. BMC Plant Biology, 2021, 21, 582.	1.6	5
6	The Ubiquitin E3 Ligase PUB17 Positively Regulates Immunity by Targeting a Negative Regulator, KH17, for Degradation. Plant Communications, 2020, 1, 100020.	3.6	15
7	StPOPA, encoding an anionic peroxidase, enhances potato resistance against Phytophthora infestans. Molecular Breeding, 2020, 40, $1.$	1.0	6
8	<i>Phytophthora infestans</i> RXLR Effectors Target Parallel Steps in an Immune Signal Transduction Pathway. Plant Physiology, 2019, 180, 2227-2239.	2.3	33
9	AVR2 Targets BSL Family Members, Which Act as Susceptibility Factors to Suppress Host Immunity. Plant Physiology, 2019, 180, 571-581.	2.3	27
10	<i>Phytophthora infestans</i> RXLR effectors act in concert at diverse subcellular locations to enhance host colonization. Journal of Experimental Botany, 2019, 70, 343-356.	2.4	66
11	<i>Phytophthora infestans</i> effector <scp>SFI</scp> 3 targets potato <scp>UBK</scp> to suppress early immune transcriptional responses. New Phytologist, 2019, 222, 438-454.	3.5	33
12	The oomycete microbe-associated molecular pattern Pep-13 triggers SERK3/BAK1-independent plant immunity. Plant Cell Reports, 2019, 38, 173-182.	2.8	8
13	PAMP-responsive ATL gene StRFP1 and its orthologue NbATL60 positively regulate Phytophthora infestans resistance in potato and Nicotiana benthamiana. Plant Science, 2018, 270, 47-57.	1.7	17
14	StPOTHR1, a NDR1/HIN1-like gene in Solanum tuberosum, enhances resistance against Phytophthora infestans. Biochemical and Biophysical Research Communications, 2018, 496, 1155-1161.	1.0	14
15	Potato late blight field resistance from QTL dPI09c is conferred by the NB-LRR gene R8. Journal of Experimental Botany, 2018, 69, 1545-1555.	2.4	56
16	The Potato MAP3K StVIK Is Required for the <i>Phytophthora infestans</i> RXLR Effector Pi17316 to Promote Disease. Plant Physiology, 2018, 177, 398-410.	2.3	61
17	Functional Dissection of Auxin Response Factors in Regulating Tomato Leaf Shape Development. Frontiers in Plant Science, 2018, 9, 957.	1.7	25
18	<i>Hair</i> , encoding a single C2H2 zincâ€finger protein, regulates multicellular trichome formation in tomato. Plant Journal, 2018, 96, 90-102.	2.8	97

#	Article	IF	CITATIONS
19	A potato STRUBBELIG-RECEPTOR FAMILY member, StLRPK1, associates with StSERK3A/BAK1 and activates immunity. Journal of Experimental Botany, 2018, 69, 5573-5586.	2.4	12
20	Cytosolic glyceraldehydeâ€3â€phosphate dehydrogenases play crucial roles in controlling coldâ€induced sweetening and apical dominance of potato (<scp><i>Solanum tuberosum</i></scp> L.) tubers. Plant, Cell and Environment, 2017, 40, 3043-3054.	2.8	31
21	Amylases StAmy23, StBAM1 and StBAM9 regulate cold-induced sweetening of potato tubers in distinct ways. Journal of Experimental Botany, 2017, 68, 2317-2331.	2.4	62
22	The Cell Death Triggered by the Nuclear Localized RxLR Effector PITG_22798 from Phytophthora infestans Is Suppressed by the Effector AVR3b. International Journal of Molecular Sciences, 2017, 18, 409.	1.8	32
23	BTB-BACK Domain Protein POB1 Suppresses Immune Cell Death by Targeting Ubiquitin E3 ligase PUB17 for Degradation. PLoS Genetics, 2017, 13, e1006540.	1.5	41
24	Oomycetes Seek Help from the Plant: Phytophthora infestans Effectors Target Host Susceptibility Factors. Molecular Plant, 2016, 9, 636-638.	3.9	41
25	Potato NPH3/RPT2-Like Protein StNRL1, Targeted by a <i>Phytophthora infestans</i> RXLR Effector, Is a Susceptibility Factor. Plant Physiology, 2016, 171, 645-657.	2.3	71
26	A Phytophthora infestans RXLR effector targets plant PP1c isoforms that promote late blight disease. Nature Communications, 2016, 7, 10311.	5.8	123
27	U-box E3 ubiquitin ligase PUB17 acts in the nucleus to promote specific immune pathways triggered by Phytophthora infestans. Journal of Experimental Botany, 2015, 66, 3189-3199.	2.4	47
28	The Potato ERF Transcription Factor StERF3 Negatively Regulates Resistance to Phytophthora infestans and Salt Tolerance in Potato. Plant and Cell Physiology, 2015, 56, 992-1005.	1.5	82
29	SSR and e-PCR Provide a Bridge Between Genetic Map and Genome Sequence of Potato for Marker Development in Target QTL Region. American Journal of Potato Research, 2015, 92, 312-317.	0.5	5
30	Molecular characterization of StNAC2 in potato and its overexpression confers drought and salt tolerance. Acta Physiologiae Plantarum, 2014, 36, 1841-1851.	1.0	30
31	The dihydrolipoyl acyltransferase gene BCE2 participates in basal resistance against Phytophthora infestans in potato and Nicotiana benthamiana. Journal of Plant Physiology, 2014, 171, 907-914.	1.6	3
32	Functional analysis of potato genes involved in quantitative resistance to Phytophthora infestans. Molecular Biology Reports, 2013, 40, 957-967.	1.0	25
33	Cloning and molecular characterization of the potato RING finger protein gene StRFP1 and its function in potato broad-spectrum resistance against Phytophthora infestans. Journal of Plant Physiology, 2010, 167, 488-496.	1.6	33
34	StPUB17, a novel potato UND/PUB/ARM repeat type gene, is associated with late blight resistance and NaCl stress. Plant Science, 2010, 178, 158-169.	1.7	31
35	A novel leucine-rich repeat receptor-like kinase gene in potato, StLRPK1, is involved in response to diverse stresses. Molecular Biology Reports, 2009, 36, 2365-2374.	1.0	30
36	Comparative cDNAâ€AFLP analysis reveals that <scp>dl</scp> â€Î²â€aminoâ€butyric acid induces resistance through early activation of the hostâ€defense genes in potato. Physiologia Plantarum, 2009, 136, 19-29.	2.6	20

#	ARTICLE	IF	CITATIONS
37	Monitoring the expression patterns of potato genes associated with quantitative resistance to late blight during Phytophthora infestans infection using cDNA microarrays. Plant Science, 2005, 169, 1155-1167.	1.7	47