Diane McDougald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/396197/publications.pdf

Version: 2024-02-01

82 papers 5,717 citations

35 h-index 72 g-index

95 all docs 95 docs citations 95 times ranked 7487 citing authors

#	Article	IF	CITATIONS
1	Differential Response of the Microbiome of Pocillopora acuta to Reciprocal Transplantation Within Singapore. Microbial Ecology, 2022, 83, 608-618.	2.8	14
2	Adaptation to an amoeba host drives selection of virulence-associated traits in <i>Vibrio cholerae</i> ISME Journal, 2022, 16, 856-867.	9.8	14
3	Loss of the Acetate Switch in Vibrio vulnificus Enhances Predation Defense against Tetrahymena pyriformis. Applied and Environmental Microbiology, 2022, 88, AEM0166521.	3.1	6
4	Adaptation to an Amoeba Host Leads to Pseudomonas aeruginosa Isolates with Attenuated Virulence. Applied and Environmental Microbiology, 2022, 88, aem0232221.	3.1	13
5	Protozoal food vacuoles enhance transformation in <i>Vibrio cholerae</i> through SOS-regulated DNA integration. ISME Journal, 2022, 16, 1993-2001.	9.8	9
6	Speciality Grand Challenge for "Biofilms― Frontiers in Cellular and Infection Microbiology, 2021, 11, 632429.	3.9	15
7	Microbial predation accelerates granulation and modulates microbial community composition. BMC Microbiology, 2021, 21, 91.	3.3	9
8	The Repressor C Protein, Pf4r, Controls Superinfection of Pseudomonas aeruginosa PAO1 by the Pf4 Filamentous Phage and Regulates Host Gene Expression. Viruses, 2021, 13, 1614.	3.3	11
9	Carbon starvation of Pseudomonas aeruginosa biofilms selects for dispersal insensitive mutants. BMC Microbiology, 2021, 21, 255.	3.3	7
10	The Impact of Protozoan Predation on the Pathogenicity of Vibrio cholerae. Frontiers in Microbiology, 2020, 11, 17.	3.5	30
11	Contact- and Water-Mediated Effects of Macroalgae on the Physiology and Microbiome of Three Indo-Pacific Coral Species. Frontiers in Marine Science, 2020, 6, .	2.5	13
12	Protozoa hosts lead to virulence. Nature Microbiology, 2020, 5, 535-535.	13.3	2
13	A comparative study on nitric oxide and hypochlorite as a membrane cleaning agent to minimise biofilm growth in a membrane bioreactor (MBR) process. Biochemical Engineering Journal, 2019, 148, 9-15.	3.6	12
14	Vibrio cholerae residing in food vacuoles expelled by protozoa are more infectious in vivo. Nature Microbiology, 2019, 4, 2466-2474.	13.3	27
15	Biofouling control in reverse osmosis by nitric oxide treatment and its impact on the bacterial community. Journal of Membrane Science, 2018, 550, 313-321.	8.2	24
16	Complete Genome Sequence of Oyster Isolate Vibrio vulnificus Env1. Genome Announcements, 2018, 6, .	0.8	2
17	Dual Role of Mechanisms Involved in Resistance to Predation by Protozoa and Virulence to Humans. Frontiers in Microbiology, 2018, 9, 1017.	3.5	51
18	Onset of Microbial Influenced Corrosion (MIC) in Stainless Steel Exposed to Mixed Species Biofilms from Equatorial Seawater . Journal of the Electrochemical Society, 2017, 164, C532-C538.	2.9	21

#	Article	IF	Citations
19	Urinary catheter-associated microbiota change in accordance with treatment and infection status. PLoS ONE, 2017, 12, e0177633.	2.5	37
20	Succession of biofilm communities responsible for biofouling of membrane bio-reactors (MBRs). PLoS ONE, 2017, 12, e0179855.	2.5	38
21	Pyomelanin produced by Vibrio cholerae confers resistance to predation by Acanthamoeba castellanii. FEMS Microbiology Ecology, 2017, 93, .	2.7	31
22	Comparative analysis of quantitative methodologies for Vibrionaceae biofilms. Folia Microbiologica, 2016, 61, 449-453.	2.3	9
23	Coral community response to bleaching on a highly disturbed reef. Scientific Reports, 2016, 6, 20717.	3.3	111
24	Sex, Scavengers, and Chaperones: Transcriptome Secrets of Divergent <i>Symbiodinium</i> Thermal Tolerances. Molecular Biology and Evolution, 2016, 33, 2201-2215.	8.9	149
25	Expression stability of 13 housekeeping genes during carbon starvation of Pseudomonas aeruginosa. Journal of Microbiological Methods, 2016, 127, 182-187.	1.6	27
26	Interactions of <i>Vibrio </i> spp. with Zooplankton. Microbiology Spectrum, 2015, 3, .	3.0	23
27	Quorum sensing-regulated chitin metabolism provides grazing resistance to <i>Vibrio cholerae</i> biofilms. ISME Journal, 2015, 9, 1812-1820.	9.8	59
28	Draft Genome Sequence of Shewanella sp. Strain CP20. Genome Announcements, 2015, 3, .	0.8	4
29	Characterization of the archaeal community fouling a membrane bioreactor. Journal of Environmental Sciences, 2015, 29, 115-123.	6.1	10
30	â€Big things in small packages: the genetics of filamentous phage and effects on fitness of their host'. FEMS Microbiology Reviews, 2015, 39, 465-487.	8.6	140
31	Analysis of microbial community composition in a labâ€scale membrane distillation bioreactor. Journal of Applied Microbiology, 2015, 118, 940-953.	3.1	19
32	The application of nitric oxide to control biofouling of membrane bioreactors. Microbial Biotechnology, 2015, 8, 549-560.	4.2	13
33	Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis: Linking biofouling layer morphology with flux stabilization. Water Research, 2015, 70, 158-173.	11.3	129
34	Micro-fabricated polydimethyl siloxane (PDMS) surfaces regulate the development of marine microbial biofilm communities. Biofouling, 2014, 30, 323-335.	2.2	35
35	The correlation between biofilm biopolymer composition and membrane fouling in submerged membrane bioreactors. Biofouling, 2014, 30, 1093-1110.	2.2	27
36	The Common Oceanographer: Crowdsourcing the Collection of Oceanographic Data. PLoS Biology, 2014, 12, e1001947.	5 . 6	41

#	Article	IF	Citations
37	Environmental cues and genes involved in establishment of the superinfective Pf4 phage of Pseudomonas aeruginosa. Frontiers in Microbiology, 2014, 5, 654.	3.5	28
38	Characterization of biofouling in a lab-scale forward osmosis membrane bioreactor (FOMBR). Water Research, 2014, 58, 141-151.	11.3	91
39	Biofouling in reverse osmosis processes: The roles of flux, crossflow velocity and concentration polarization in biofilm development. Journal of Membrane Science, 2014, 467, 116-125.	8.2	45
40	The Rise of Pathogens: Predation as a Factor Driving the Evolution of Human Pathogens in the Environment. Microbial Ecology, 2013, 65, 860-868.	2.8	88
41	Impact of a biofouling layer on the vapor pressure driving force and performance of a membrane distillation process. Journal of Membrane Science, 2013, 438, 140-152.	8.2	65
42	Dynamics of biofilm formation under different nutrient levels and the effect on biofouling of a reverse osmosis membrane system. Biofouling, 2013, 29, 319-330.	2.2	44
43	Optimal dosing regimen of nitric oxide donor compounds for the reduction of <i>Pseudomonas aeruginosa </i> biofilm and isolates from wastewater membranes. Biofouling, 2013, 29, 203-212.	2.2	64
44	Predation Response of Vibrio fischeri Biofilms to Bacterivorus Protists. Applied and Environmental Microbiology, 2013, 79, 553-558.	3.1	54
45	Relative Contributions of Vibrio Polysaccharide and Quorum Sensing to the Resistance of Vibrio cholerae to Predation by Heterotrophic Protists. PLoS ONE, 2013, 8, e56338.	2.5	32
46	Environmental reservoirs and mechanisms of persistence of Vibrio cholerae. Frontiers in Microbiology, 2013, 4, 375.	3.5	214
47	Effect of Pharmaceuticals on the Performance of a Novel Osmotic Membrane Bioreactor (OMBR). Separation Science and Technology, 2012, 47, 543-554.	2.5	55
48	Evolution from Bacteria to Mammalia of selected marker genes involved in energy metabolism and stress responses: Bioinformatic approach and applications in coral reef ecology. Comparative Biochemistry and Physiology Part A, Molecular & Entry: Integrative Physiology, 2012, 163, S29.	1.8	0
49	Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nature Reviews Microbiology, 2012, 10, 39-50.	28.6	702
50	Glucose Starvation-Induced Dispersal of Pseudomonas aeruginosa Biofilms Is cAMP and Energy Dependent. PLoS ONE, 2012, 7, e42874.	2.5	67
51	Dynamic modelling of cell death during biofilm development. Journal of Theoretical Biology, 2012, 295, 23-36.	1.7	48
52	The impact of flux and spacers on biofilm development on reverse osmosis membranes. Journal of Membrane Science, 2012, 405-406, 219-232.	8.2	82
53	In situ grazing resistance of Vibrio cholerae in the marine environment. FEMS Microbiology Ecology, 2011, 76, 504-512.	2.7	26
54	Study of integration of forward osmosis and biological process: Membrane performance under elevated salt environment. Desalination, 2011, 283, 123-130.	8.2	139

#	Article	IF	Citations
55	Interfaces Between Bacterial and Eukaryotic "Neuroecology". Integrative and Comparative Biology, 2011, 51, 794-806.	2.0	26
56	Species-specific patterns in the vulnerability of Âcarbon-starved bacteria to protist grazing. Aquatic Microbial Ecology, 2011, 64, 105-116.	1.8	12
57	Pseudomonas aeruginosa PAO1 Preferentially Grows as Aggregates in Liquid Batch Cultures and Disperses upon Starvation. PLoS ONE, 2009, 4, e5513.	2.5	175
58	The genomic basis of trophic strategy in marine bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15527-15533.	7.1	685
59	The biofilm life cycle and virulence of <i>Pseudomonas aeruginosa</i> are dependent on a filamentous prophage. ISME Journal, 2009, 3, 271-282.	9.8	296
60	Detection and Inhibition of Bacterial Cell–Cell Communication. , 2008, 431, 55-68.		4
61	Vibrio cholerae Strains Possess Multiple Strategies for Abiotic and Biotic Surface Colonization. Journal of Bacteriology, 2007, 189, 5348-5360.	2.2	81
62	Bacterial quorum sensing and interference by naturally occurring biomimics. Analytical and Bioanalytical Chemistry, 2007, 387, 445-453.	3.7	82
63	Vibrio2005: the First International Conference on the Biology of Vibrios. Journal of Bacteriology, 2006, 188, 4592-4596.	2.2	17
64	The role of quorum sensing and the effect of environmental conditions on biofilm formation by strains of Vibrio vulnificus. Biofouling, 2006, 22, 161-172.	2.2	26
65	Bacterial communication: when does a metabolite become a signal?. Microbiology Australia, 2006, 27, 115.	0.4	1
66	Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16819-16824.	7.1	288
67	Signal-mediated cross-talk regulates stress adaptation in Vibrio species. Microbiology (United) Tj ETQq1 1 0.7843	14 rgBT /(1.8	Overlock 10
68	Defences against oxidative stress during starvation in bacteria. Antonie Van Leeuwenhoek, 2002, 81, 3-13.	1.7	58
69	SmcR-Dependent Regulation of Adaptive Phenotypes in Vibrio vulnificus. Journal of Bacteriology, 2001, 183, 758-762.	2.2	85
70	Vibrio vulnificus: a physiological and genetic approach to the viable but nonculturable response. Journal of Infection and Chemotherapy, 2000, 6, 115-120.	1.7	35
71	The marine pathogen Vibrio vulnificus encodes a putative homologue of the Vibrio harveyi regulatory gene, luxR: a genetic and phylogenetic comparison. Gene, 2000, 248, 213-221.	2.2	46
72	Nonculturability: adaptation or debilitation?. FEMS Microbiology Ecology, 1998, 25, 1-9.	2.7	250

#	Article	IF	CITATIONS
73	Nonculturability: adaptation or debilitation?. FEMS Microbiology Ecology, 1998, 25, 1-9.	2.7	15
74	Global analysis of physiological responses in marine bacteria. Electrophoresis, 1997, 18, 1441-1450.	2.4	14
75	In situ analysis of nucleic acids in cold-induced nonculturable Vibrio vulnificus. Applied and Environmental Microbiology, 1997, 63, 2754-2758.	3.1	48
76	Analysis of starvation conditions that allow for prolonged culturability of Vibrio vulnificus at low temperature. Microbiology (United Kingdom), 1996, 142, 1675-1684.	1.8	38
77	Effect of temperature and plasmid carriage on nonculturability in organisms targeted for release. FEMS Microbiology Ecology, 1995, 17, 229-237.	2.7	19
78	Effect of temperature and plasmid carriage on nonculturability in organisms targeted for release. FEMS Microbiology Ecology, 1995, 17, 229-237.	2.7	1
79	Entry into, and resuscitation from, the viable but nonculturable state by Vibrio vulnificus in an estuarine environment. Applied and Environmental Microbiology, 1995, 61, 2624-2630.	3.1	242
80	Transformation of Vibrio vulnificus by electroporation. Current Microbiology, 1994, 28, 289-291.	2.2	8
81	Quorum-Sensing Inhibition. , 0, , 393-416.		7
82	Adaptive Responses of Vibrios. , 0, , 133-155.		13