
Madoka Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3961409/publications.pdf Version: 2024-02-01

MADOKA SUZUKI

#	Article	IF	CITATIONS
1	Piezoelectric Nanoparticle-Assisted Wireless Neuronal Stimulation. ACS Nano, 2015, 9, 7678-7689.	7.3	236
2	A Nanoparticle-Based Ratiometric and Self-Calibrated Fluorescent Thermometer for Single Living Cells. ACS Nano, 2014, 8, 198-206.	7.3	183
3	Mitochondria-targeted fluorescent thermometer monitors intracellular temperature gradient. Chemical Communications, 2015, 51, 8044-8047.	2.2	159
4	A Molecular Fluorescent Probe for Targeted Visualization of Temperature at the Endoplasmic Reticulum. Scientific Reports, 2014, 4, 6701.	1.6	153
5	Microscopic Detection of Thermogenesis in a Single HeLa Cell. Biophysical Journal, 2007, 92, L46-L48.	0.2	149
6	The 105 gap issue between calculation and measurement in single-cell thermometry. Nature Methods, 2015, 12, 802-803.	9.0	85
7	Walking nanothermometers: spatiotemporal temperature measurement of transported acidic organelles in single living cells. Lab on A Chip, 2012, 12, 1591.	3.1	84
8	Optical visualisation of thermogenesis in stimulated single-cell brown adipocytes. Scientific Reports, 2017, 7, 1383.	1.6	77
9	Gold Nanoshell-Mediated Remote Myotube Activation. ACS Nano, 2017, 11, 2494-2508.	7.3	69
10	In situ measurements of intracellular thermal conductivity using heater-thermometer hybrid diamond nanosensors. Science Advances, 2021, 7, .	4.7	67
11	Multifunctional temozolomide-loaded lipid superparamagnetic nanovectors: dual targeting and disintegration of glioblastoma spheroids by synergic chemotherapy and hyperthermia treatment. Nanoscale, 2019, 11, 21227-21248.	2.8	56
12	Highly thermosensitive Ca2+dynamics in a HeLa cell through IP3receptors. HFSP Journal, 2009, 3, 117-123.	2.5	53
13	The challenge of intracellular temperature. Biophysical Reviews, 2020, 12, 593-600.	1.5	49
14	Microscopic heat pulses induce contraction of cardiomyocytes without calcium transients. Biochemical and Biophysical Research Communications, 2012, 417, 607-612.	1.0	47
15	A novel method of thermal activation and temperature measurement in the microscopic region around single living cells. Journal of Neuroscience Methods, 2004, 139, 69-77.	1.3	44
16	Direct organelle thermometry with fluorescence lifetime imaging microscopy in single myotubes. Chemical Communications, 2016, 52, 4458-4461.	2.2	44
17	Inter-sarcomere coordination in muscle revealed through individual sarcomere response to quick stretch. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11954-11959.	3.3	43
18	Triggering of high-speed neurite outgrowth using an optical microheater. Scientific Reports, 2015, 5, 16611.	1.6	36

MADOKA SUZUKI

#	Article	IF	CITATIONS
19	Facilely Fabricated Luminescent Nanoparticle Thermosensor for Real-Time Microthermography in Living Animals. ACS Sensors, 2016, 1, 1222-1227.	4.0	35
20	Nonlinear Force-Length Relationship in the ADP-Induced Contraction of Skeletal Myofibrils. Biophysical Journal, 2007, 93, 4330-4341.	0.2	33
21	Length-dependent activation and auto-oscillation in skeletal myofibrils at partial activation by Ca2+. Biochemical and Biophysical Research Communications, 2008, 366, 233-238.	1.0	29
22	The effect of tropomyosin on force and elementary steps of the cross-bridge cycle in reconstituted bovine myocardium. Journal of Physiology, 2004, 556, 637-649.	1.3	28
23	Fast temperature measurement following single laser-induced cavitation inside a microfluidic gap. Scientific Reports, 2014, 4, 5445.	1.6	28
24	Micro-thermography in millimeter-scale animals by using orally-dosed fluorescent nanoparticle thermosensors. Analyst, The, 2015, 140, 7534-7539.	1.7	25
25	Directional Bleb Formation in Spherical Cells under Temperature Gradient. Biophysical Journal, 2015, 109, 355-364.	0.2	25
26	A New Muscle Contractile System Composed of a Thick Filament Lattice and a Single Actin Filament. Biophysical Journal, 2005, 89, 321-328.	0.2	21
27	Ca2+-associated triphasic pH changes in mitochondria during brown adipocyte activation. Molecular Metabolism, 2017, 6, 797-808.	3.0	19
28	Neurotransmitter-Loaded Nanocapsule Triggers On-Demand Muscle Relaxation in Living Organism. ACS Applied Materials & Interfaces, 2018, 10, 37812-37819.	4.0	18
29	Microscopic heat pulse-induced calcium dynamics in single WI-38 fibroblasts. Biophysics (Nagoya-shi,) Tj ETQq1	1 0,7843 0,4	14 rgBT /Ove
30	Modulation of Local Cellular Activities using a Photothermal Dye-Based Subcellular-Sized Heat Spot. ACS Nano, 2022, 16, 9004-9018.	7.3	17
31	Regulation of Muscle Contraction by Ca2+ and ADP: Focusing on the0 Auto-Oscillation (SPOC). , 2007, 592, 341-358.		14
32	Microscopic heat pulses activate cardiac thin filaments. Journal of General Physiology, 2019, 151, 860-869.	0.9	13
33	Molecular motors as an autoâ€oscillator. HFSP Journal, 2010, 4, 100-104.	2.5	12
34	A Beetle Flight Muscle Displays Leg Muscle Microstructure. Biophysical Journal, 2016, 111, 1295-1303.	0.2	11
35	Opportunities for hybrid diamond nanosensors targeting photothermal applications in biological systems. Applied Physics Letters, 2021, 119, .	1.5	9
36	Quasiperiodic Distribution of Rigor Cross-Bridges Along a Reconstituted Thin Filament in a Skeletal Myofibril. Biophysical Journal, 2011, 101, 2740-2748.	0.2	7

MADOKA SUZUKI

#	Article	IF	CITATIONS
37	Opto-thermal technologies for microscopic analysis of cellular temperature-sensing systems. Biophysical Reviews, 2022, 14, 41-54.	1.5	7
38	Estimation of actomyosin active force maintained by tropomyosin and troponin complex under vertical forces in the in vitro motility assay system. PLoS ONE, 2018, 13, e0192558.	1.1	6
39	Functional significance of HCM mutants of tropomyosin, V95A and D175N, studied with <i>in vitro</i> motility assays. Biophysics and Physicobiology, 2019, 16, 28-40.	0.5	6
40	Synthesis of a Large‧ized Mesoporous Phosphosilicate Thin Film through Evaporationâ€Induced Polymeric Micelle Assembly. Chemistry - an Asian Journal, 2015, 10, 183-187.	1.7	5
41	Intracellular bottom-up generation of targeted nanosensors for single-molecule imaging. Nanoscale, 2016, 8, 3218-3225.	2.8	5
42	Oral Dosing of Chemical Indicators for In Vivo Monitoring of Ca2+ Dynamics in Insect Muscle. PLoS ONE, 2015, 10, e0116655.	1.1	4
43	Bright Dots and Smart Optical Microscopy to Probe Intracellular Events in Single Cells. Frontiers in Bioengineering and Biotechnology, 2018, 6, 204.	2.0	4
44	Molecular Synchronization in Actomyosin Motors — From Single Molecule to Muscle Fiber Via Nanomuscle. , 2005, 565, 25-36.		3
45	Nanosized Optical Thermometers. , 2018, , 199-217.		3
46	Microscopic Temperature Control Reveals Cooperative Regulation of Actin–Myosin Interaction by Drebrin E. Nano Letters, 2021, 21, 9526-9533.	4.5	3
47	Mass Spectrometric Screening of Ligands with Lower Off-Rate from a Clicked-Based Pooled Library. ACS Combinatorial Science, 2012, 14, 451-455.	3.8	2
48	Self-calibrated fluorescent thermometer nanoparticles enable in vivo micro thermography in milimeter scale living animals. , 2015, , .		2
49	Focal calcium monitoring with targeted nanosensors at the cytosolic side of endoplasmic reticulum. Science and Technology of Advanced Materials, 2016, 17, 293-299.	2.8	2
50	Bio-Nanomuscle Project: Contractile Properties of Single Actin Filaments in an A-Band Motility Assay System. Advances in Experimental Medicine and Biology, 2003, 538, 103-110.	0.8	2
51	Backstage of rising body temperature: Advances in research on intracellular heat diffusion. Temperature, 2021, 8, 303-305.	1.7	2
52	Nanosuspension: An Emerging and Promising Approach to Drug Delivery for the Enhancement of the Bioavailability of Poorly Soluble Drugs. , 2016, , 873-877.		1
53	BSJ 2019 "Single-cell PRESTO―session. Biophysical Reviews, 2020, 12, 301-302.	1.5	1

#	Article	IF	CITATIONS
55	Assessment of the Effects of a Wireless Neural Stimulation Mediated by Piezoelectric Nanoparticles. Neuromethods, 2018, , 109-120.	0.2	0
56	Why Do We Try to Image the Temperature Changes in Individual Brown Adipocytes?. Seibutsu Butsuri, 2018, 58, 097-099.	0.0	0
57	Walking Nanothermometer. Seibutsu Butsuri, 2013, 53, 158-159.	0.0	0