Ctirad Uher

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3961396/ctirad-uher-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

38,821 496 184 92 h-index g-index papers citations 8.8 43,383 7.28 511 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
496	Extraordinary role of Zn in enhancing thermoelectric performance of Ga-doped n-type PbTe. <i>Energy and Environmental Science</i> , 2022 , 15, 368-375	35.4	12
495	A comprehensive review on Bi 2 Te 3 -based thin films: Thermoelectrics and beyond 2022 , 1, 88-115		17
494	The role of Ge vacancies and Sb doping in GeTe: a comparative study of Thermoelectric Transport Properties in SbxGe1-1.5xTe and SbxGe1-xTe Compounds. <i>Materials Today Physics</i> , 2022 , 100682	8	1
493	Fast ion transport for synthesis and stabilization of 眍nSb. <i>Nature Communications</i> , 2021 , 12, 6077	17.4	0
492	All-Optical Probe of Three-Dimensional Topological Insulators Based on High-Harmonic Generation by Circularly Polarized Laser Fields. <i>Nano Letters</i> , 2021 , 21, 8970-8978	11.5	8
491	An Instant Change of Elastic Lattice Strain during Cu2Se Phase Transition: Origin of Abnormal Thermoelectric Properties. <i>Advanced Functional Materials</i> , 2021 , 31, 2100431	15.6	9
490	Identifying the Manipulation of Individual Atomic-Scale Defects for Boosting Thermoelectric Performances in Artificially Controlled BiTe Films. <i>ACS Nano</i> , 2021 , 15, 5706-5714	16.7	12
489	Ultralow Thermal Conductivity in Diamondoid Structures and High Thermoelectric Performance in (CuAg)(InGa)Te. <i>Journal of the American Chemical Society</i> , 2021 , 143, 5978-5989	16.4	15
488	New criteria for the applicability of combustion synthesis: The investigation of thermodynamic and kinetic processes for binary Chemical Reactions. <i>Journal of Alloys and Compounds</i> , 2021 , 860, 158465	5.7	1
487	Measurements of nonequilibrium interatomic forces using time-domain x-ray scattering. <i>Physical Review B</i> , 2021 , 103,	3.3	1
486	Strong Valence Band Convergence to Enhance Thermoelectric Performance in PbSe with Two Chemically Independent Controls. <i>Angewandte Chemie</i> , 2021 , 133, 272-277	3.6	6
485	Strong Valence Band Convergence to Enhance Thermoelectric Performance in PbSe with Two Chemically Independent Controls. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 268-273	16.4	11
484	Achieving superior performance in thermoelectric Bi0.4Sb1.6Te3.72 by enhancing texture and inducing high-density line defects. <i>Science China Materials</i> , 2021 , 64, 1507-1520	7.1	3
483	Dissociation of GaSb in n-Type PbTe: off-Centered Gallium Atom and Weak Electron Phonon Coupling Provide High Thermoelectric Performance. <i>Chemistry of Materials</i> , 2021 , 33, 1842-1851	9.6	11
482	Atomic mechanism of ionic confinement in the thermoelectric Cu2Se based on a low-cost electric-current method. <i>Cell Reports Physical Science</i> , 2021 , 2, 100345	6.1	3
481	The origin of ultra-low thermal conductivity of the Bi2Te2S compound and boosting the thermoelectric performance via carrier engineering. <i>Materials Today Physics</i> , 2021 , 20, 100472	8	3
480	Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe. <i>Advanced Materials</i> , 2021 , 33, e2104908	24	5

(2020-2021)

479	High carrier mobility and ultralow thermal conductivity in the synthetic layered superlattice Sn4Bi10Se19. <i>Materials Advances</i> , 2021 , 2, 2382-2390	3.3	4
478	Electroresistance in multipolar antiferroelectric CuSe semiconductor. <i>Nature Communications</i> , 2021 , 12, 7207	17.4	1
477	Nanoscale Engineering of Polymorphism in CuSe-Based Composites. <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2020 , 12, 31601-31611	9.5	3
476	Contrasting SnTe-NaSbTe and SnTe-NaBiTe Thermoelectric Alloys: High Performance Facilitated by Increased Cation Vacancies and Lattice Softening. <i>Journal of the American Chemical Society</i> , 2020 , 142, 12524-12535	16.4	21
475	Anomalously Large Seebeck Coefficient of CuFeS2 Derives from Large Asymmetry in the Energy Dependence of Carrier Relaxation Time. <i>Chemistry of Materials</i> , 2020 , 32, 2639-2646	9.6	16
474	Understanding the thermally activated charge transport in NaPbmSbQm+2 (Q = S, Se, Te) thermoelectrics: weak dielectric screening leads to grain boundary dominated charge carrier scattering. <i>Energy and Environmental Science</i> , 2020 , 13, 1509-1518	35.4	40
473	Vacancy-Based Defect Regulation for High Thermoelectric Performance in GeSbTe Compounds. <i>ACS Applied Materials & Defect Regulation for High Thermoelectric Performance in GeSbTe Compounds. ACS Applied Materials & Defect Regulation for High Thermoelectric Performance in GeSbTe Compounds.</i>	9.5	24
472	Quasilinear dispersion in electronic band structure and high Seebeck coefficient in CuFeS2-based thermoelectric materials. <i>Physical Review Materials</i> , 2020 , 4,	3.2	1
471	Discordant nature of Cd in PbSe: off-centering and coreBhell nanoscale CdSe precipitates lead to high thermoelectric performance. <i>Energy and Environmental Science</i> , 2020 , 13, 200-211	35.4	36
470	Discordant nature of Cd in GeTe enhances phonon scattering and improves band convergence for high thermoelectric performance. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 1193-1204	13	49
469	Impurity states in Mo1⊠MxSe2 compounds doped with group VB elements and their electronic and thermal transport properties. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 619-629	7.1	7
468	Thickness-dependent electronic transport induced by in situ transformation of point defects in MBE-grown Bi2Te3 thin films. <i>Applied Physics Letters</i> , 2020 , 117, 153902	3.4	11
467	Ultrafine Interwoven Dendritic Cu2Se/CuFeSe2 Composites with Enhanced Thermoelectric Performance. <i>ACS Applied Energy Materials</i> , 2020 , 3, 9133-9142	6.1	6
466	Blocking Ion Migration Stabilizes the High Thermoelectric Performance in Cu Se Composites. <i>Advanced Materials</i> , 2020 , 32, e2003730	24	49
465	Origin of the Distinct Thermoelectric Transport Properties of Chalcopyrite ABTe2 (A = Cu, Ag; B = Ga, In). <i>Advanced Functional Materials</i> , 2020 , 30, 2005861	15.6	21
464	Lone-Electron-Pair Micelles Strengthen Bond Anharmonicity in MnPbSbS Complex Sulfosalt Leading to Ultralow Thermal Conductivity. <i>ACS Applied Materials & Description</i> (12), 44991-449	99.5	6
463	Ultralow thermal conductivity in diamondoid lattices: high thermoelectric performance in chalcopyrite Cu0.8+yAg0.2In1JTe2. <i>Energy and Environmental Science</i> , 2020 , 13, 3693-3705	35.4	19
462	CuAlSe Inclusions Trigger Dynamic Cu Ion Depletion from the CuSe Matrix Enabling High Thermoelectric Performance. <i>ACS Applied Materials & Description</i> (12, 58018-58027)	9.5	1

461	High Figure of Merit in Gallium-Doped Nanostructured n-Type PbTe-GeTe with Midgap States. Journal of the American Chemical Society, 2019 , 141, 16169-16177	16.4	44
460	Fine-tuning the solid-state ordering and thermoelectric performance of regioregular P3HT analogues by sequential oxygen-substitution of carbon atoms along the alkyl side chains. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 2333-2344	7.1	11
459	Ultralow thermal conductivity in graphenelilica porous ceramics with a special saucer structure of graphene aerogels. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 1574-1584	13	8
458	Origin of Intrinsically Low Thermal Conductivity in Talnakhite CuFeS Thermoelectric Material: Correlations between Lattice Dynamics and Thermal Transport. <i>Journal of the American Chemical Society</i> , 2019 , 141, 10905-10914	16.4	29
457	Synergistically Improved Electronic and Thermal Transport Properties in Nb-Doped NbMoSeTe Solid Solutions Due to Alloy Phonon Scattering and Increased Valley Degeneracy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 26069-26081	9.5	9
456	Ultralow thermal conductivity of BaAg2SnSe4 and the effect of doping by Ga and In. <i>Materials Today Physics</i> , 2019 , 9, 100098	8	14
455	Fracture structure and thermoelectric enhancement of CuSe with substitution of nanostructured AgSe. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 13569-13577	3.6	12
454	Charge Disproportionation Triggers Bipolar Doping in FeSbSn Se Ferromagnetic Semiconductors, Enabling a Temperature-Induced Lifshitz Transition. <i>Journal of the American Chemical Society</i> , 2019 , 141, 9249-9261	16.4	2
453	Engineering Magnetic Transitions in Fe1\(\mathbb{R}\)SnxBi2Se4 n-Type Ferromagnetic Semiconductors through Chemical Manipulation of Spatial Separation between Magnetic Centers. <i>Chemistry of Materials</i> , 2019 , 31, 3507-3518	9.6	2
452	Thermoelectric and thermal stability improvements in Nano-Cu2Se included Ag2Se. <i>Journal of Solid State Chemistry</i> , 2019 , 273, 122-127	3.3	18
451	Optimizing the average power factor of p-type (Na, Ag) co-doped polycrystalline SnSe <i>RSC Advances</i> , 2019 , 9, 7115-7122	3.7	12
450	Charge-carrier behavior in Ba-, Sr- and Yb-filled CoSb3: NMR and transport studies. <i>Physical Review B</i> , 2019 , 99,	3.3	2
449	Enhancement of Thermoelectric Performance for n-Type PbS through Synergy of Gap State and Fermi Level Pinning. <i>Journal of the American Chemical Society</i> , 2019 , 141, 6403-6412	16.4	48
448	Coherent magnetic nanoinclusions induce charge localization in half-Heusler alloys leading to high-Tc ferromagnetism and enhanced thermoelectric performance. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 11095-11103	13	14
447	Enhanced Density-of-States Effective Mass and Strained Endotaxial Nanostructures in Sb-Doped PbCdTe Thermoelectric Alloys. <i>ACS Applied Materials & Description of the Strained Endotaxial Nanostructures in Sb-Doped PbCdTe Thermoelectric Alloys. ACS Applied Materials & Description of the Strained Endotaxial Nanostructures in Sb-Doped PbCdTe Thermoelectric Alloys. <i>ACS Applied Materials & Description of the Strained Endotaxial Nanostructures in Sb-Doped PbCdTe Thermoelectric Alloys. ACS Applied Materials & Description of the Strained Endotaxial Nanostructures in Sb-Doped PbCdTe Thermoelectric Alloys. <i>ACS Applied Materials & Description of the Strained Endotaxial Nanostructures in Sb-Doped PbCdTe Thermoelectric Alloys. ACS Applied Materials & Description of the Strained Endotaxial Nanostructures in Sb-Doped PbCdTe Thermoelectric Alloys. <i>ACS Applied Materials & Description of the Strained Endotaxial Nanostructures in Sb-Doped PbCdTe Thermoelectric Alloys. ACS Applied Materials & Description of the Strained Endotaxial Nanostructures in Sb-Doped PbCdTe Thermoelectric Alloys. ACS Applied Materials & Description of the Strained Endotaxial Nanostructures in Sb-Doped PbCdTe Thermoelectric Nanostructures</i></i></i></i>	9.5	46
446	3D Printing of highly textured bulk thermoelectric materials: mechanically robust BiSbTe alloys with superior performance. <i>Energy and Environmental Science</i> , 2019 , 12, 3106-3117	35.4	64
445	Ultralow Thermal Conductivity and High-Temperature Thermoelectric Performance in n-Type K2.5Bi8.5Se14. <i>Chemistry of Materials</i> , 2019 , 31, 5943-5952	9.6	15
444	High Thermoelectric Performance in PbSeNaSbSe2 Alloys from Valence Band Convergence and Low Thermal Conductivity. <i>Advanced Energy Materials</i> , 2019 , 9, 1901377	21.8	42

(2018-2019)

443	All-Scale Hierarchically Structured p-Type PbSe Alloys with High Thermoelectric Performance Enabled by Improved Band Degeneracy. <i>Journal of the American Chemical Society</i> , 2019 , 141, 4480-4480	5 ^{16.4}	62
442	Mictomagnetic full-Heusler nanoprecipitates in (Ti, Zr, Hf)NiFexSn half-Heusler composites. <i>Materials Today Physics</i> , 2019 , 11, 100155	8	7
441	High-efficiency half-Heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization. <i>Energy and Environmental Science</i> , 2019 , 12, 3390-3399	35.4	77
440	Modification of Bulk Heterojunction and Cl Doping for High-Performance Thermoelectric SnSe/SnSe Nanocomposites. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 15793-15802	9.5	28
439	Fabrication and Thermoelectric Properties of n-Type CoSbTe Using Selective Laser Melting. <i>ACS Applied Materials & District Materials &</i>	9.5	25
438	Rapid fabrication and thermoelectric performance of SnTe via non-equilibrium laser 3D printing. <i>Rare Metals</i> , 2018 , 37, 300-307	5.5	7
437	Low temperature thermoelectric properties of p-type doped single-crystalline SnSe. <i>Applied Physics Letters</i> , 2018 , 112, 142102	3.4	19
436	Sodium-Doped Tin Sulfide Single Crystal: A Nontoxic Earth-Abundant Material with High Thermoelectric Performance. <i>Advanced Energy Materials</i> , 2018 , 8, 1800087	21.8	54
435	High Thermoelectric Performance in SnTeAgSbTe2 Alloys from Lattice Softening, Giant Phonon Vacancy Scattering, and Valence Band Convergence. <i>ACS Energy Letters</i> , 2018 , 3, 705-712	20.1	90
434	Discovery of a magnetic conductive interface in PbZrTiO /SrTiO heterostructures. <i>Nature Communications</i> , 2018 , 9, 685	17.4	12
433	Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2673-2686	16.4	206
432	Structure and thermoelectric properties of 2D Cr2Se3BxS3x solid solutions. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 836-846	7.1	9
431	Preparation and properties of ultra-low density proppants for use in hydraulic fracturing. <i>Journal of Petroleum Science and Engineering</i> , 2018 , 163, 100-109	4.4	12
430	Surface phonons in the topological insulators Bi2Se3 and Bi2Te3. <i>Solid State Communications</i> , 2018 , 271, 1-5	1.6	7
429	High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe. <i>Energy and Environmental Science</i> , 2018 , 11, 1520-1535	35.4	155
428	Chemical manipulation of phase stability and electronic behavior in Cu4\(\mathbb{Q}\)AgxSe2. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 6997-7004	13	8
427	Engineering Temperature-Dependent Carrier Concentration in Bulk Composite Materials via Temperature-Dependent Fermi Level Offset. <i>Advanced Energy Materials</i> , 2018 , 8, 1701623	21.8	15
426	Suppression of atom motion and metal deposition in mixed ionic electronic conductors. <i>Nature Communications</i> , 2018 , 9, 2910	17.4	97

425	Understanding the Intrinsic Carrier Transport in Highly Oriented Poly(3-hexylthiophene): Effect of Side Chain Regioregularity. <i>Polymers</i> , 2018 , 10,	4.5	12
424	Soft phonon modes from off-center Ge atoms lead to ultralow thermal conductivity and superior thermoelectric performance in n-type PbSetieSe. <i>Energy and Environmental Science</i> , 2018 , 11, 3220-323	30 ^{35.4}	75
423	Unconventional large linear magnetoresistance in Cu2NTe. AIP Advances, 2018, 8, 055135	1.5	2
422	Insights on the Synthesis, Crystal and Electronic Structures, and Optical and Thermoelectric Properties of SrSb HfSe Orthorhombic Perovskite. <i>Inorganic Chemistry</i> , 2018 , 57, 7402-7411	5.1	10
421	High Thermoelectric Performance in Supersaturated Solid Solutions and Nanostructured n-Type PbTe©eTe. <i>Advanced Functional Materials</i> , 2018 , 28, 1801617	15.6	69
420	Finite element analysis of temperature and stress fields during the selective laser melting process of thermoelectric SnTe. <i>Journal of Materials Processing Technology</i> , 2018 , 261, 74-85	5.3	38
419	Interpreting the Combustion Process for High-Performance ZrNiSn Thermoelectric Materials. <i>ACS Applied Materials & District Materials</i> , 10, 864-872	9.5	19
418	Ultra-high average figure of merit in synergistic band engineered SnxNa1⊠Se0.9S0.1 single crystals. <i>Materials Today</i> , 2018 , 21, 501-507	21.8	55
417	Understanding the combustion process for the synthesis of mechanically robust SnSe thermoelectrics. <i>Nano Energy</i> , 2018 , 44, 53-62	17.1	37
416	Chemical Insights into PbSe- x%HgSe: High Power Factor and Improved Thermoelectric Performance by Alloying with Discordant Atoms. <i>Journal of the American Chemical Society</i> , 2018 , 140, 18115-18123	16.4	60
415	Dual Alloying Strategy to Achieve a High Thermoelectric Figure of Merit and Lattice Hardening in p-Type Nanostructured PbTe. <i>ACS Energy Letters</i> , 2018 , 3, 2593-2601	20.1	30
414	Direct Measurement of Anharmonic Decay Channels of a Coherent Phonon. <i>Physical Review Letters</i> , 2018 , 121, 125901	7.4	18
413	Electron Density Optimization and the Anisotropic Thermoelectric Properties of Ti Self-Intercalated TiS Compounds. <i>ACS Applied Materials & Description</i> , 10, 32344-32354	9.5	14
412	Weak Electron Phonon Coupling and Deep Level Impurity for High Thermoelectric Performance Pb1⊠GaxTe. <i>Advanced Energy Materials</i> , 2018 , 8, 1800659	21.8	75
411	Absence of Nanostructuring in NaPb SbTe: Solid Solutions with High Thermoelectric Performance in the Intermediate Temperature Regime. <i>Journal of the American Chemical Society</i> , 2018 , 140, 7021-70	3 ^{16.4}	19
410	Thermal conductivity in BiSbTe and the role of dense dislocation arrays at grain boundaries. <i>Science Advances</i> , 2018 , 4, eaar5606	14.3	102
409	Thermoelectric properties of n-type ZrNiSn prepared by rapid non-equilibrium laser processing <i>RSC Advances</i> , 2018 , 8, 15796-15803	3.7	14
408	Multi-Scale Microstructural Thermoelectric Materials: Transport Behavior, Non-Equilibrium Preparation, and Applications. <i>Advanced Materials</i> , 2017 , 29, 1602013	24	182

407	Potential for superionic conductors in thermoelectric applications. <i>Current Opinion in Green and Sustainable Chemistry</i> , 2017 , 4, 58-63	7.9	23
406	NMR study of vacancy and structure-induced changes in Cu2-xTe. <i>Journal of Physics and Chemistry of Solids</i> , 2017 , 106, 52-57	3.9	8
405	Panoscopic approach for high-performance Te-doped skutterudite. NPG Asia Materials, 2017, 9, e352-e3	8 5 0.3	37
404	Non-equilibrium synthesis and characterization of n-type Bi2Te2.7Se0.3 thermoelectric material prepared by rapid laser melting and solidification. <i>RSC Advances</i> , 2017 , 7, 21439-21445	3.7	28
403	Intrinsically low thermal conductivity from a quasi-one-dimensional crystal structure and enhanced electrical conductivity network via Pb doping in SbCrSe3. <i>NPG Asia Materials</i> , 2017 , 9, e387-e387	10.3	26
402	Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se. <i>Energy and Environmental Science</i> , 2017 , 10, 1668-1676	35.4	207
401	Thermoelectric Materials: Multi-Scale Microstructural Thermoelectric Materials: Transport Behavior, Non-Equilibrium Preparation, and Applications (Adv. Mater. 20/2017). <i>Advanced Materials</i> , 2017 , 29,	24	3
400	Preparation of n-type Bi2Te3 thermoelectric materials by non-contact dispenser printing combined with selective laser melting. <i>Physica Status Solidi - Rapid Research Letters</i> , 2017 , 11, 1700067	2.5	27
399	Subtle Roles of Sb and S in Regulating the Thermoelectric Properties of N-Type PbTe to High Performance. <i>Advanced Energy Materials</i> , 2017 , 7, 1700099	21.8	88
398	Chemical synthesis and enhanced electrical properties of bulk poly(3,4-ethylenedioxythiophene)/reduced graphene oxide nanocomposites. <i>Synthetic Metals</i> , 2017 , 229, 65-71	3.6	14
397	Eco-friendly high-performance silicide thermoelectric materials. <i>National Science Review</i> , 2017 , 4, 611-6	26 0.8	49
396	Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. <i>Energy and Environmental Science</i> , 2017 , 10, 956-963	35.4	181
395	Crystal Structure and Thermoelectric Properties of the L Lillianite Homologue PbBiSe. <i>Inorganic Chemistry</i> , 2017 , 56, 261-268	5.1	18
394	Facile room temperature solventless synthesis of high thermoelectric performance Ag2Se via a dissociative adsorption reaction. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 23243-23251	13	52
393	Stretchable conductors by kirigami patterning of aramid-silver nanocomposites with zero conductance gradient. <i>Applied Physics Letters</i> , 2017 , 111, 161901	3.4	32
392	Grain boundary scattering effects on mobilities in p-type polycrystalline SnSe. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 10191-10200	7.1	35
391	Grain boundary engineering with nano-scale InSb producing high performance In Ce Co4Sb12+ skutterudite thermoelectrics. <i>Journal of Materiomics</i> , 2017 , 3, 273-279	6.7	27
390	Surface vibrational modes of the topological insulator Bi2Se3 observed by Raman spectroscopy. <i>Physical Review B</i> , 2017 , 95,	3.3	22

389	Entropy as a Gene-Like Performance Indicator Promoting Thermoelectric Materials. <i>Advanced Materials</i> , 2017 , 29, 1702712	24	130
388	High thermoelectric performance of p-BiSbTe compounds prepared by ultra-fast thermally induced reaction. <i>Energy and Environmental Science</i> , 2017 , 10, 2638-2652	35.4	90
387	Thermoelectric performance of CuFeS2+2x composites prepared by rapid thermal explosion. <i>NPG Asia Materials</i> , 2017 , 9, e390-e390	10.3	29
386	Modification of the intermediate band and thermoelectric properties in Se-doped CoSbS1⊠Sex compounds. <i>RSC Advances</i> , 2017 , 7, 34466-34472	3.7	9
385	Thermoelectric properties of Cu/Ag doped type-III Ba24Ge100 clathrates. <i>Journal of Solid State Chemistry</i> , 2017 , 253, 414-420	3.3	4
384	The Role of Zn in Chalcopyrite CuFeS2: Enhanced Thermoelectric Properties of Cu1\(\textbf{Z}\) ZnxFeS2 with In Situ Nanoprecipitates. <i>Advanced Energy Materials</i> , 2017 , 7, 1601299	21.8	107
383	Optimization of Ag Nanoparticles on Thermoelectric Performance of Ba-Filled Skutterudite. <i>Science of Advanced Materials</i> , 2017 , 9, 682-687	2.3	9
382	Origins of phase separation in thermoelectric (Ti, Zr, Hf)NiSn half-Heusler alloys from first principles. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13949-13956	13	34
381	Nonmagnetic In Substituted CuFe1IInxS2 Solid Solution Thermoelectric. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 27895-27902	3.8	27
380	Promising bulk nanostructured Cu2Se thermoelectrics via high throughput and rapid chemical synthesis. <i>RSC Advances</i> , 2016 , 6, 111457-111464	3.7	28
379	Suppressed Magnetic Circular Dichroism and Valley-Selective Magnetoabsorption due to the Effective Mass Anisotropy in Bismuth. <i>Physical Review Letters</i> , 2016 , 117, 017402	7.4	4
378	Optimization of the Electronic Band Structure and the Lattice Thermal Conductivity of Solid Solutions According to Simple Calculations: A Canonical Example of the Mg2Si1MJGexSny Ternary Solid Solution. <i>Chemistry of Materials</i> , 2016 , 28, 5538-5548	9.6	40
377	Band Ordering and Dynamics of Cu2½Te and Cu1.98Ag0.2Te. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 14549-14555	3.8	11
376	Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe-SrTe. <i>Nature Communications</i> , 2016 , 7, 12167	17.4	377
375	High Strength Conductive Composites with Plasmonic Nanoparticles Aligned on Aramid Nanofibers. <i>Advanced Functional Materials</i> , 2016 , 26, 8435-8445	15.6	89
374	Enhanced ZT and attempts to chemically stabilize Cu2Se via Sn doping. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17225-17235	13	62
373	Zhao et al. reply. <i>Nature</i> , 2016 , 539, E2-E3	50.4	10
372	Manipulating the Combustion Wave during Self-Propagating Synthesis for High Thermoelectric Performance of Layered Oxychalcogenide Bi1\(\text{BPbxCuSeO}. \) Chemistry of Materials, 2016, 28, 4628-4640	9.6	71

(2016-2016)

371	Thermoelectric properties of p-type Ag1[Pb1In) Sb1IIe+2. <i>Journal of Solid State Chemistry</i> , 2016 , 242, 34-42	3.3	5
370	A first-principles approach to half-Heusler thermoelectrics: Accelerated prediction and understanding of material properties. <i>Journal of Materiomics</i> , 2016 , 2, 104-113	6.7	43
369	Recent advances in high-performance bulk thermoelectric materials. <i>International Materials Reviews</i> , 2016 , 61, 379-415	16.1	302
368	Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals. <i>Energy and Environmental Science</i> , 2016 , 9, 454-460	35.4	331
367	Phase Segregation and Superior Thermoelectric Properties of Mg2Si(1-x)Sb(x) (0 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	9.5	37
366	Enhanced Thermoelectric Properties in the Counter-Doped SnTe System with Strained Endotaxial SrTe. <i>Journal of the American Chemical Society</i> , 2016 , 138, 2366-73	16.4	213
365	Distribution of impurity states and charge transport in Zr0.25Hf0.75Ni1+xSn1JSby nanocomposites. <i>Journal of Solid State Chemistry</i> , 2016 , 234, 72-86	3.3	5
364	In situ nanostructure design leading to a high figure of merit in an eco-friendly stable Mg2Si0.30Sn0.70 solid solution. <i>RSC Advances</i> , 2016 , 6, 16824-16831	3.7	12
363	Cr2Ge2Te6: High Thermoelectric Performance from Layered Structure with High Symmetry. <i>Chemistry of Materials</i> , 2016 , 28, 1611-1615	9.6	64
362	Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. <i>Science</i> , 2016 , 351, 141-4	33.3	1237
361	Toward High-Thermoelectric-Performance Large-Size Nanostructured BiSbTe Alloys via Optimization of Sintering-Temperature Distribution. <i>Advanced Energy Materials</i> , 2016 , 6, 1600595	21.8	42
360	Ultra-Fast One-Step Fabrication of Cu2Se Thermoelectric Legs With NiAl Electrodes by Plasma-Activated Reactive Sintering Technique . <i>Advanced Engineering Materials</i> , 2016 , 18, 1181-1188	3.5	8
359	Thermoelectric Devices for Power Generation: Recent Progress and Future Challenges . <i>Advanced Engineering Materials</i> , 2016 , 18, 194-213	3.5	218
358	On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory Experiment perspective. <i>Npj Computational Materials</i> , 2016 , 2,	10.9	290
357	Indium Preferential Distribution Enables Electronic Engineering of Magnetism in FeSb2\(\mathbb{Q}\)InxSe4 p-Type High-Tc Ferromagnetic Semiconductors. <i>Chemistry of Materials</i> , 2016 , 28, 8570-8579	9.6	8
356	Chapter 3 Growth and Transport Properties of Tetradymite Thin Films 2016 , 95-124		2
355	Origins of enhanced thermoelectric power factor in topologically insulating Bi0.64Sb1.36Te3 thin films. <i>Applied Physics Letters</i> , 2016 , 108, 043902	3.4	8
354	Highly anisotropic P3HT films with enhanced thermoelectric performance via organic small molecule epitaxy. <i>NPG Asia Materials</i> , 2016 , 8, e292-e292	10.3	101

353	A low-temperature study of manganese-induced ferromagnetism and valence band convergence in tin telluride. <i>Applied Physics Letters</i> , 2016 , 108, 182101	3.4	11
352	Mechanochemical synthesis of high thermoelectric performance bulk Cu2X (X = S, Se) materials. <i>APL Materials</i> , 2016 , 4, 116110	5.7	24
351	Band structure engineering in highly degenerate tetrahedrites through isovalent doping. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17096-17103	13	33
350	Concerted Rattling in CsAg5 Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 11431-6	16.4	105
349	Concerted Rattling in CsAg5Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance. <i>Angewandte Chemie</i> , 2016 , 128, 11603-11608	3.6	15
348	Anisotropic thermal transport in MOF-5 composites. <i>International Journal of Heat and Mass Transfer</i> , 2015 , 82, 250-258	4.9	23
347	Understanding the role and interplay of heavy-hole and light-hole valence bands in the thermoelectric properties of PbSe. <i>Physical Review B</i> , 2015 , 91,	3.3	29
346	Thermal stability of Mg2Si0.3Sn0.7 under different heat treatment conditions. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10381-10387	7.1	29
345	Ultra-fast non-equilibrium synthesis and phase segregation in InxSn1⊠Te thermoelectrics by SHS-PAS processing. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 8550-8558	7.1	35
344	Toward high thermoelectric performance p-type FeSb2.2Te0.8via in situ formation of InSb nanoinclusions. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 8372-8380	7.1	26
343	Codoping in SnTe: Enhancement of Thermoelectric Performance through Synergy of Resonance Levels and Band Convergence. <i>Journal of the American Chemical Society</i> , 2015 , 137, 5100-12	16.4	310
342	High thermoelectric performance of higher manganese silicides prepared by ultra-fast thermal explosion. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 12116-12122	7.1	47
341	Valence Band Modification and High Thermoelectric Performance in SnTe Heavily Alloyed with MnTe. <i>Journal of the American Chemical Society</i> , 2015 , 137, 11507-16	16.4	289
340	Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe. <i>Energy and Environmental Science</i> , 2015 , 8, 267-277	35.4	279
339	Mechanically Robust BiSbTe Alloys with Superior Thermoelectric Performance: A Case Study of Stable Hierarchical Nanostructured Thermoelectric Materials. <i>Advanced Energy Materials</i> , 2015 , 5, 1401	3 3 1.8	232
338	High-quality ultra-flat BiSbTe3 films grown by MBE. Journal of Crystal Growth, 2015, 410, 23-29	1.6	15
337	Pb7Bi4Se13: a lillianite homologue with promising thermoelectric properties. <i>Inorganic Chemistry</i> , 2015 , 54, 746-55	5.1	50
336	High-Tc Ferromagnetism and Electron Transport in p-Type Fe(1-x)Sn(x)Sb2Se4 Semiconductors. <i>Inorganic Chemistry</i> , 2015 , 54, 10371-9	5.1	5

335	Phase separation of full-Heusler nanostructures in half-Heusler thermoelectrics and vibrational properties from first-principles calculations. <i>Physical Review B</i> , 2015 , 92,	3.3	55
334	Structure and Transport Properties of Bi2Te3 Films 2015 , 73-98		1
333	Epitaxial growth and improved electronic properties of (Bi1Bb)2Te3 thin films grown on sapphire (0001) substrates: The influence of Sb content and the annealing. <i>Journal of Alloys and Compounds</i> , 2015 , 647, 50-56	5.7	9
332	Coordination Assembly of Discoid Nanoparticles. <i>Angewandte Chemie</i> , 2015 , 127, 9094-9098	3.6	3
331	Coordination Assembly of Discoid Nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 8966-70	16.4	21
330	Ultrahigh Thermoelectric Performance in Mosaic Crystals. <i>Advanced Materials</i> , 2015 , 27, 3639-44	24	163
329	High thermoelectric performance of mechanically robust n-type Bi2Te3\(\mathbb{B}\)Sex prepared by combustion synthesis. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 6603-6613	13	97
328	Innentitelbild: Coordination Assembly of Discoid Nanoparticles (Angew. Chem. 31/2015). <i>Angewandte Chemie</i> , 2015 , 127, 8976-8976	3.6	
327	Low-Temperature Structure and Dynamics in Cu2Se. Journal of Physical Chemistry C, 2015, 119, 20293-	20 29 8	31
326	Thermoelectric Properties of Ga/Ag Codoped Type-III Batelclathrates with in Situ Nanostructures. <i>ACS Applied Materials & Samp; Interfaces</i> , 2015 , 7, 19172-8	9.5	8
325	Ultralow thermal conductivity of ¶Cu2Se by atomic fluidity and structure distortion. <i>Acta Materialia</i> , 2015 , 86, 247-253	8.4	67
324	Coexistence of high-T(c) ferromagnetism and n-type electrical conductivity in FeBi2Se4. <i>Journal of the American Chemical Society</i> , 2015 , 137, 691-8	16.4	23
323	Enhanced thermoelectric performance of optimized Ba, Yb filled and Fe substituted skutterudite compounds. <i>Journal of Alloys and Compounds</i> , 2014 , 585, 168-172	5.7	41
322	Influence of substituting Sn for Sb on the thermoelectric transport properties of CoSb3-based skutterudites. <i>Journal of Applied Physics</i> , 2014 , 115, 103704	2.5	18
321	Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. <i>Nature</i> , 2014 , 508, 373-7	50.4	3074
320	High-performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds. <i>Advanced Materials</i> , 2014 , 26, 3848-53	24	211
319	Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide. <i>Nature Communications</i> , 2014 , 5, 3640	17.4	76
318	Advanced thermoelectrics governed by a single parabolic band: Mg2Si(0.3)Sn(0.7), a canonical example. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 6893-7	3.6	93

317	Hierarchically structured TiO2 for Ba-filled skutterudite with enhanced thermoelectric performance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 20629-20635	13	45
316	Highly efficient (InIIelk(GeTe)(3-3x) thermoelectric materials: a substitute for TAGS. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 15570-5	3.6	46
315	Donor and acceptor impurity-driven switching of magnetic ordering in MnSb2\sumsetsSnxSe4. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 6199-6210	7.1	24
314	Low effective mass and carrier concentration optimization for high performance p-type Mg2(1-x)Li2xSi0.3Sn0.7 solid solutions. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 23576-83	3.6	59
313	Low-temperature structural and transport anomalies in Cu2Se. <i>Physical Review B</i> , 2014 , 89,	3.3	46
312	Low-temperature electrical resistivity and thermal conductivity of binary magnesium alloys. <i>Acta Materialia</i> , 2014 , 80, 288-295	8.4	48
311	Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping. Journal of the American Chemical Society, 2014 , 136, 11412-9	16.4	259
310	Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing. <i>Nature Communications</i> , 2014 , 5, 4908	17.4	243
309	Thermoelectric transport properties of p-type silver-doped PbS within situAg2S nanoprecipitates. Journal Physics D: Applied Physics, 2014 , 47, 115303	3	20
308	High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. <i>Journal of the American Chemical Society</i> , 2014 , 136, 7006-17	16.4	425
307	Measurement of transient atomic displacements in thin films with picosecond and femtometer resolution. <i>Structural Dynamics</i> , 2014 , 1, 034301	3.2	18
306	High-quality II-VI films grown on amorphous substrates using tunable tetradymite templates. <i>Applied Physics Letters</i> , 2014 , 105, 221606	3.4	3
305	Ultra-fast synthesis and thermoelectric properties of Te doped skutterudites. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 17914-17918	13	78
304	SnTeAgBiTe2 as an efficient thermoelectric material with low thermal conductivity. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 20849-20854	13	117
303	Ordered horizontal Sb2Te3 nanowires induced by femtosecond lasers. <i>Applied Physics Letters</i> , 2014 , 105, 201904	3.4	О
302	High Performance Thermoelectricity in Earth-Abundant Compounds Based on Natural Mineral Tetrahedrites. <i>Advanced Energy Materials</i> , 2013 , 3, 342-348	21.8	395
301	Tuning the temperature domain of phonon drag in thin films by the choice of substrate. <i>Physical Review Letters</i> , 2013 , 111, 046803	7.4	16
300	Low-temperature transport properties of Tl-doped Bi2Te3 single crystals. <i>Physical Review B</i> , 2013 , 88,	3.3	38

299	Stretchable nanoparticle conductors with self-organized conductive pathways. <i>Nature</i> , 2013 , 500, 59-63	3 50.4	613
298	In situ synthesis and thermoelectric properties of PbTegraphene nanocomposites by utilizing a facile and novel wet chemical method. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 12503	13	101
297	Structural modifications and non-monotonic carrier concentration in Bi2Se0.3Te2.7 by reversible electrochemical lithium reactions. <i>Acta Materialia</i> , 2013 , 61, 1508-1517	8.4	18
296	Thermoelectric performance of nanostructured p-type Zr0.5Hf0.5Co0.4Rh0.6Sb1\(\mathbb{B}\)Snx half-Heusler alloys. <i>Journal of Solid State Chemistry</i> , 2013 , 202, 70-76	3.3	17
295	Rapid preparation of CeFe4Sb12 skutterudite by melt spinning: rich nanostructures and high thermoelectric performance. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 12657	13	85
294	Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2 Se1-x Ix. <i>Advanced Materials</i> , 2013 , 25, 6607-12	24	319
293	Transport properties of ZnTe:N thin films. <i>Applied Physics Letters</i> , 2013 , 103, 042108	3.4	7
292	Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phononphonon correlations. <i>Nature Physics</i> , 2013 , 9, 790-794	16.2	118
291	Structure-transformation-induced abnormal thermoelectric properties in semiconductor copper selenide. <i>Materials Letters</i> , 2013 , 93, 121-124	3.3	65
2 90	Correlation between processing conditions, microstructure and charge transport in half-Heusler alloys. <i>Journal of Solid State Chemistry</i> , 2013 , 201, 280-287	3.3	5
289	Enhancing thermopower and hole mobility in bulk p-type half-Heuslers using full-Heusler nanostructures. <i>Nanoscale</i> , 2013 , 5, 9419-27	7.7	39
288	All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. <i>Energy and Environmental Science</i> , 2013 , 6, 3346	35.4	532
287	Enhanced hole concentration through Ga doping and excess of Mg and thermoelectric properties of p-type Mg2(1+z)(Si0.3Sn0.7)1 Gay. <i>Intermetallics</i> , 2013 , 32, 352-361	3.5	46
286	Thermoelectric properties of p-type YbxLayFe2.7Co1.3Sb12 double-filled skutterudites. <i>Intermetallics</i> , 2013 , 32, 209-213	3.5	45
285	Realization of high thermoelectric performance in p-type unfilled ternary skutterudites FeSb2+xTe1\(\text{W}\) via band structure modification and significant point defect scattering. <i>Acta Materialia</i> , 2013 , 61, 7693-7704	8.4	39
284	High figure of merit and thermoelectric properties of Bi-doped Mg2Si0.4Sn0.6 solid solutions. <i>Journal of Solid State Chemistry</i> , 2013 , 203, 333-339	3.3	108
283	Thermoelectric properties of Ag-doped Cu2Se and Cu2Te. Journal of Materials Chemistry A, 2013, 1, 124	1718,	210
282	Free-carrier relaxation and lattice heating in photoexcited bismuth. <i>Physical Review B</i> , 2013 , 87,	3.3	23

281	Thermoelectric properties of small diameter carbon nanowires. <i>Carbon</i> , 2013 , 53, 286-291	10.4	6
280	Lower Thermal Conductivity and Higher Thermoelectric Performance of Fe-Substituted and Ce, Yb Double-Filled p-Type Skutterudites. <i>Journal of Electronic Materials</i> , 2013 , 42, 1622-1627	1.9	19
279	High thermoelectric performance via hierarchical compositionally alloyed nanostructures. <i>Journal of the American Chemical Society</i> , 2013 , 135, 7364-70	16.4	281
278	Thermal and electrical transport in ultralow density single-walled carbon nanotube networks. <i>Advanced Materials</i> , 2013 , 25, 2926-31	24	33
277	Large enhancements of thermopower and carrier mobility in quantum dot engineered bulk semiconductors. <i>Journal of the American Chemical Society</i> , 2013 , 135, 7486-95	16.4	93
276	Investigation of the valence band structure of PbSe by optical and transport measurement. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1490, 75-81		2
275	Optimized thermoelectric performance of Bi2Te3 nanowires. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 6831	13	30
274	Time- and momentum-resolved probe of heat transport in photo-excited bismuth. <i>Applied Physics Letters</i> , 2013 , 102, 181903	3.4	3
273	Poster: Spin-Related Phenomena 2013 , 589-632		
272	Ultrafast-laser Modification of Thermoelectric Sb2Te3 Thin Films. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1456, 1		
271	Preparation and thermoelectric properties of Ga-substituted p-type fully filled skutterudites CeFe4\(GaxSb12\). <i>Journal of Solid State Chemistry</i> , 2012 , 196, 203-208	3.3	22
270	Enhanced thermoelectric properties of Ba-filled skutterudites by grain size reduction and Ag nanoparticle inclusion. <i>Journal of Materials Chemistry</i> , 2012 , 22, 2958-2964		76
269	The role of Ga in Ba0.30GaxCo4Sb12+x filled skutterudites. <i>Journal of Materials Chemistry</i> , 2012 , 22, 15628		25
268	Copper ion liquid-like thermoelectrics. <i>Nature Materials</i> , 2012 , 11, 422-5	27	1339
267	Multiscale calculations of thermoelectric properties of n-type Mg2Si1⊠Snx solid solutions. <i>Physical Review B</i> , 2012 , 85,	3.3	82
266	High thermoelectric performance of In, Yb, Ce multiple filled CoSb3 based skutterudite compounds. <i>Journal of Solid State Chemistry</i> , 2012 , 193, 31-35	3.3	52
265	Configuring pnicogen rings in skutterudites for low phonon conductivity. <i>Physical Review B</i> , 2012 , 86,	3.3	28
264	Enhanced thermoelectric properties of n-type Mg2.16(Si0.4Sn0.6)1 JSby due to nano-sized Sn-rich precipitates and an optimized electron concentration. <i>Journal of Materials Chemistry</i> , 2012 , 22, 13653		112

263	PbTe P bSnS2 thermoelectric composites: low lattice thermal conductivity from large microstructures. <i>Energy and Environmental Science</i> , 2012 , 5, 8716	35.4	47
262	Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions. <i>Physical Review Letters</i> , 2012 , 108, 166601	7.4	854
261	Sb and Se Substitution in CsBi4Te6: The Semiconductors CsM4Q6(M = Bi, Sb; Q = Te, Se), Cs2Bi10Q15, and CsBi5Q8. <i>Chemistry of Materials</i> , 2012 , 24, 1854-1863	9.6	25
260	Thermoelectrics with earth abundant elements: high performance p-type PbS nanostructured with SrS and CaS. <i>Journal of the American Chemical Society</i> , 2012 , 134, 7902-12	16.4	197
259	Increase in the Figure of Merit by Cd-Substitution in Sn1\(\text{PbxTe} \) and Effect of Pb/Sn Ratio on Thermoelectric Properties. <i>Advanced Energy Materials</i> , 2012 , 2, 1218-1225	21.8	19
258	Thermoelectric Performance of Sb- and La-Doped Mg2Si0.5Ge0.5. <i>Journal of Electronic Materials</i> , 2012 , 41, 1589-1594	1.9	16
257	Microstructure and thermoelectric properties of CoSb2.75Ge0.25⊠Tex prepared by rapid solidification. <i>Acta Materialia</i> , 2012 , 60, 3536-3544	8.4	55
256	Evolution of structural and thermoelectric properties of indium-ion-implanted epitaxial GaAs. <i>Applied Physics Letters</i> , 2012 , 100, 102101	3.4	5
255	Femtosecond laser-induced nanostructure formation in Sb2Te3. <i>Applied Physics Letters</i> , 2011 , 99, 1219	03.4	12
254	Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys. <i>Journal of the American Chemical Society</i> , 2011 , 133, 18843-52	16.4	205
253	Structure and Transport Properties of Double-Doped CoSb2.75Ge0.25⊠Tex (x = 0.125 0 .20) with in Situ Nanostructure. <i>Chemistry of Materials</i> , 2011 , 23, 2948-2955	9.6	102
252	Rapid synthesis of high thermoelectric performance higher manganese silicide with in-situ formed nano-phase of MnSi. <i>Intermetallics</i> , 2011 , 19, 404-408	3.5	113
251	Thermoelectric properties of P-type Yb-filled skutterudite YbxFeyCo4-ySb12. <i>Intermetallics</i> , 2011 , 19, 1390-1393	3.5	44
250	p-Type skutterudites RxMyFe3CoSb12 (R, MI=IBa, Ce, Nd, and Yb): Effectiveness of double-filling for the lattice thermal conductivity reduction. <i>Intermetallics</i> , 2011 , 19, 1747-1751	3.5	84
249	High thermoelectric figure of merit in nanostructured p-type PbTeMTe (M = Ca, Ba). <i>Energy and Environmental Science</i> , 2011 , 4, 4675	35.4	153
248	Thermoelectric properties of Co0.9Fe0.1Sb3-based skutterudite nanocomposites with FeSb2 nanoinclusions. <i>Journal of Applied Physics</i> , 2011 , 109, 063722	2.5	20
247	Strained endotaxial nanostructures with high thermoelectric figure of merit. <i>Nature Chemistry</i> , 2011 , 3, 160-6	17.6	794
246	Thermal and electronic charge transport in bulk nanostructured Zr0.25Hf0.75NiSn composites with full-Heusler inclusions. <i>Journal of Solid State Chemistry</i> , 2011 , 184, 2948-2960	3.3	59

245	Synthesis and evaluation of lead telluride/bismuth antimony telluride nanocomposites for thermoelectric applications. <i>Journal of Solid State Chemistry</i> , 2011 , 184, 3195-3201	3.3	28
244	High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures. <i>Journal of the American Chemical Society</i> , 2011 , 133, 16588-97	16.4	289
243	Enhanced thermoelectric performance and novel nanopores in AgSbTe2 prepared by melt spinning. Journal of Solid State Chemistry, 2011 , 184, 109-114	3.3	49
242	Thermoelectric Properties of Triple-Filled Ba x Yb y In z Co4Sb12 Skutterudites. <i>Journal of Electronic Materials</i> , 2011 , 40, 570-576	1.9	41
241	Structure and Thermoelectric Properties of Te- and Ge-Doped Skutterudites CoSb2.875\(\text{Ge0.125Te} \) x. Journal of Electronic Materials, 2011 , 40, 1286-1291	1.9	8
240	Crystal Structure, Charge Transport, and Magnetic Properties of MnSb2Se4. <i>European Journal of Inorganic Chemistry</i> , 2011 , 2011, 3969-3977	2.3	28
239	Optimized Thermoelectric Properties of Sb-Doped Mg2(1+z)Si0.5 Sn0.5 Sby through Adjustment of the Mg Content. Chemistry of Materials, 2011, 23, 5256-5263	9.6	127
238	. Journal of Microelectromechanical Systems, 2011 , 20, 1201-1210	2.5	19
237	Kapitza conductance of Bi/sapphire interface studied by depth- and time-resolved X-ray diffraction. <i>Solid State Communications</i> , 2011 , 151, 826-829	1.6	10
236	Recent Advances in the Growth of BiBbITeBe Thin Films. <i>Science of Advanced Materials</i> , 2011 , 3, 539-560	2.3	36
235	Thermoelectric Properties of Non-equilibrium Synthesized Ce0.9Fe3CoSb12 Filled Skutterudites. <i>Materials Research Society Symposia Proceedings</i> , 2010 , 1267, 1		5
234	Investigation of the thermoelectric properties of the PbTe-SrTe system. <i>Materials Research Society Symposia Proceedings</i> , 2010 , 1267, 1		2
233	High thermoelectric efficiency in co-doped degenerate p-type PbTe. <i>Materials Research Society Symposia Proceedings</i> , 2010 , 1267, 1		1
232	Nitrogen composition dependence of electron effective mass in GaAs1⊠Nx. <i>Physical Review B</i> , 2010 , 82,	3.3	18
231	Coherent optical phonon spectroscopy studies of femtosecond-laser modified Sb2Te3 films. <i>Applied Physics Letters</i> , 2010 , 97, 171908	3.4	25
230	Anisotropic hybrid particles based on electrohydrodynamic co-jetting of nanoparticle suspensions. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 11894-9	3.6	42
229	Thermoelectric Properties of the Compounds AgPbmLaTem+2 Chemistry of Materials, 2010 , 22, 876-88	33 .6	21
228	Enhanced Figure-of-Merit in Se-Doped p-Type AgSbTe2 Thermoelectric Compound. <i>Chemistry of Materials</i> , 2010 , 22, 5521-5527	9.6	97

(2009-2010)

227	In situ nanostructure generation and evolution within a bulk thermoelectric material to reduce lattice thermal conductivity. <i>Nano Letters</i> , 2010 , 10, 2825-31	11.5	95
226	Exploring resonance levels and nanostructuring in the PbTe-CdTe system and enhancement of the thermoelectric figure of merit. <i>Journal of the American Chemical Society</i> , 2010 , 132, 5227-35	16.4	153
225	Microstructure and Thermoelectric Properties of Mechanically Robust PbTe-Si Eutectic Composites. <i>Chemistry of Materials</i> , 2010 , 22, 869-875	9.6	45
224	Structural order-disorder transitions and phonon conductivity of partially filled skutterudites. <i>Physical Review Letters</i> , 2010 , 105, 265901	7.4	53
223	High thermoelectric figure of merit and nanostructuring in bulk AgSbTe2. <i>Journal of Materials Chemistry</i> , 2010 , 20, 6138		65
222	High temperature Seebeck coefficient metrology. <i>Journal of Applied Physics</i> , 2010 , 108, 121101	2.5	156
221	Doping and Defect Structure of Tetradymite-Type Crystals. <i>Journal of Electronic Materials</i> , 2010 , 39, 21	6 2 : 3 16	6433
220	Charge-Compensated n-Type Skutterudites. <i>Journal of Electronic Materials</i> , 2010 , 39, 2122-2126	1.9	23
219	Figure of Merit of (Sb0.75Bi0.25)2☑ In x Te2.8Se0.2 Single Crystals. <i>Journal of Electronic Materials</i> , 2010 , 39, 1760-1763	1.9	3
218	Thermoelectric properties of Bi2O2Se. <i>Materials Chemistry and Physics</i> , 2010 , 119, 299-302	4.4	122
217	Lithium ions in the van der Waals gap of Bi2Se3 single crystals. <i>Journal of Solid State Chemistry</i> , 2010 , 183, 2813-2817	3.3	28
216	High-performance micro scale thermoelectric cooler: An optimized 6-stage cooler 2009,		3
215	Transport and mechanical properties of Yb-filled skutterudites. <i>Philosophical Magazine</i> , 2009 , 89, 1517-	1 5.8 4	69
214	Nanostructured bulk YbxCo4Sb12with high thermoelectric performance prepared by the rapid solidification method. <i>Journal Physics D: Applied Physics</i> , 2009 , 42, 145409	3	52
213	The Effect on Thermoelectric Properties of Cd Substitution in PbTe. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1166, 9		
212	Micro thermoelectric cooler: Planar multistage. <i>International Journal of Heat and Mass Transfer</i> , 2009 , 52, 1843-1852	4.9	23
211	Thermoelectric Properties and Nanostructuring in the p-Type Materials NaPb18⊠SnxMTe20 (M = Sb, Bi). <i>Chemistry of Materials</i> , 2009 , 21, 1683-1694	9.6	50
210	Improvement in the Thermoelectric Figure of Merit by La/Ag Cosubstitution in PbTe. <i>Chemistry of Materials</i> , 2009 , 21, 1361-1367	9.6	66

209	The mechanism of periodic layer formation during solid-state reaction between Mg and SiO2. <i>Intermetallics</i> , 2009 , 17, 920-926	3.5	26
208	High thermoelectric figure of merit and improved mechanical properties in melt quenched PbTeLie and PbTeLie 1½Six eutectic and hypereutectic composites. <i>Journal of Applied Physics</i> , 2009 , 105, 083718	2.5	45
207	High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase. <i>Applied Physics Letters</i> , 2009 , 94, 102114	3.4	285
206	A Facile Hydrothermal Synthesis of Iron Oxide Nanoparticles with Tunable Magnetic Properties. Journal of Physical Chemistry C, 2009 , 113, 13593-13599	3.8	215
205	Substitution of Bi for Sb and its Role in the Thermoelectric Properties and Nanostructuring in Ag1 \square Pb18MTe20 (M = Bi, Sb) (x = 0, 0.14, 0.3). <i>Chemistry of Materials</i> , 2008 , 20, 3512-3520	9.6	71
204	Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites. <i>Applied Physics Letters</i> , 2008 , 92, 182101	3.4	334
203	Rapid preparation method of bulk nanostructured Yb0.3Co4Sb12+y compounds and their improved thermoelectric performance. <i>Applied Physics Letters</i> , 2008 , 93, 252109	3.4	116
202	Low-temperature characterization and micropatterning of coevaporated Bi2Te3 and Sb2Te3 films. <i>Journal of Applied Physics</i> , 2008 , 104, 113710	2.5	57
201	Phase-diagram-related problems in thermoelectric materials: Skutterudites as an example. <i>International Journal of Materials Research</i> , 2008 , 99, 638-643	0.5	4
200	Phase transitions of Dirac electrons in bismuth. <i>Science</i> , 2008 , 321, 547-50	33.3	134
200 199	Phase transitions of Dirac electrons in bismuth. <i>Science</i> , 2008 , 321, 547-50 Figure of merit of quaternary (Sb0.75Bi0.25)2\(\text{MInxTe3}\) single crystals. <i>Journal of Applied Physics</i> , 2008 , 104, 023701	33·3 2.5	134 23
	Figure of merit of quaternary (Sb0.75Bi0.25)2\(\text{MInxTe3}\) single crystals. Journal of Applied Physics,		
199	Figure of merit of quaternary (Sb0.75Bi0.25)2\(\text{MInxTe3}\) single crystals. Journal of Applied Physics, 2008 , 104, 023701	2.5	23
199 198	Figure of merit of quaternary (Sb0.75Bi0.25)2\(\text{MInxTe3}\) single crystals. Journal of Applied Physics, 2008, 104, 023701 Defect structure of Sb2\(\text{MCrxTe3}\) single crystals. Journal of Applied Physics, 2008, 103, 013516 Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by	2.5	23
199 198 197	Figure of merit of quaternary (Sb0.75Bi0.25)2\(\text{MInxTe3}\) single crystals. Journal of Applied Physics, 2008, 104, 023701 Defect structure of Sb2\(\text{MCrxTe3}\) single crystals. Journal of Applied Physics, 2008, 103, 013516 Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. Angewandte Chemie - International Edition, 2008, 47, 8618-22 Thermodynamic analysis of the filling fraction limits for impurities in CoSb3 based on ab initio	2.5 2.5 16.4	23 10 203
199 198 197	Figure of merit of quaternary (Sb0.75Bi0.25)2\(\text{MInxTe3}\) single crystals. Journal of Applied Physics, 2008, 104, 023701 Defect structure of Sb2\(\text{MCrxTe3}\) single crystals. Journal of Applied Physics, 2008, 103, 013516 Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. Angewandte Chemie - International Edition, 2008, 47, 8618-22 Thermodynamic analysis of the filling fraction limits for impurities in CoSb3 based on ab initio calculations. Acta Materialia, 2008, 56, 1733-1740 The high-temperature elastic moduli of polycrystalline PbTe measured by resonant ultrasound	2.5 2.5 16.4 8.4	23 10 203 37
199 198 197 196	Figure of merit of quaternary (Sb0.75Bi0.25)2\(\text{MInxTe3} \) single crystals. Journal of Applied Physics, 2008, 104, 023701 Defect structure of Sb2\(\text{NCrxTe3} \) single crystals. Journal of Applied Physics, 2008, 103, 013516 Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. Angewandte Chemie - International Edition, 2008, 47, 8618-22 Thermodynamic analysis of the filling fraction limits for impurities in CoSb3 based on ab initio calculations. Acta Materialia, 2008, 56, 1733-1740 The high-temperature elastic moduli of polycrystalline PbTe measured by resonant ultrasound spectroscopy. Acta Materialia, 2008, 56, 5954-5963	2.5 2.5 16.4 8.4	23 10 203 37 51

191	Transport and magnetic properties of the diluted magnetic semiconductors Sb1.98\(\mathbb{U}\) V0.016Mny Te3. <i>Physica Status Solidi (B): Basic Research</i> , 2007 , 244, 2202-2209	1.3	6
190	Solid solubility of Ir and Rh at the Co sites of skutterudites. <i>Journal of Applied Physics</i> , 2007 , 101, 12352	52.5	10
189	Investigation of Thermoelectric Materials: Substitution effect of Bi on the Ag1-xPb18MTe20 (M = Sb, Bi) (x = 0, 0.14, 0.3). <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1044, 1		
188	Transport Behavior and Thermal Conductivity Reduction in the Composite System PbTe-Pb-Sb. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1044, 1		5
187	Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb(1-x)Sn(x)Te-PbS. <i>Journal of the American Chemical Society</i> , 2007 , 129, 9780-8	16.4	385
186	Influence of fullerene dispersion on high temperature thermoelectric properties of BayCo4Sb12-based composites. <i>Journal of Applied Physics</i> , 2007 , 102, 103709	2.5	56
185	Transport coefficients and defect structure of Sb2MAgxTe3 single crystals. <i>Journal of Physics and Chemistry of Solids</i> , 2006 , 67, 1457-1463	3.9	34
184	Nanostructuring and High Thermoelectric Efficiency in p-Type Ag(Pb1 lySny)mSbTe2 + m. <i>Advanced Materials</i> , 2006 , 18, 1170-1173	24	303
183	Carrier-mediated ferromagnetism in vanadium-doped (Sb1\(\mathbb{B}\)ix)2Te3 solid solutions. <i>Applied Physics Letters</i> , 2006 , 88, 192502	3.4	9
182	Structure inhomogeneities, shallow defects, and charge transport in the series of thermoelectric materials K2Bi8\(\text{BSbxSe13}. \) Journal of Applied Physics, 2006 , 100, 123704	2.5	17
181	On the existence of Einstein oscillators and thermal conductivity in bulk metallic glass. <i>Applied Physics Letters</i> , 2006 , 89, 031924	3.4	37
180	Ferromagnetic interlayer exchange coupling in semiconductor SbCrTeBb2Te3BbCrTe trilayer structures. <i>Applied Physics Letters</i> , 2006 , 89, 232501	3.4	7
179	Nanostructures versus solid solutions: low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14347-55	16.4	173
178	Thin film dilute ferromagnetic semiconductors Sb2\(\mathbb{R}\)CrxTe3 with a Curie temperature up to 190K. <i>Physical Review B</i> , 2006 , 74,	3.3	70
177	Coexistence of Large Thermopower and Degenerate Doping in the Nanostructured Material Ag0.85SnSb1.15Te3. <i>Chemistry of Materials</i> , 2006 , 18, 4719-4721	9.6	40
176	Strong Reduction of Thermal Conductivity in Nanostructured PbTe Prepared by Matrix Encapsulation. <i>Chemistry of Materials</i> , 2006 , 18, 4993-4995	9.6	164
175	Substantial pressure effect on the resistivity and Curie temperature for the diluted magnetic semiconductor Sb2 Vx Te3. <i>Physica Status Solidi (B): Basic Research</i> , 2006 , 243, 1862-1866	1.3	4
174	Magnetic and transport properties of Sb2⊠FexTe3 (0. <i>Journal of Applied Physics</i> , 2006 , 99, 043901	2.5	26

173	n-type to p-type crossover in quaternary BixSbyPbzSe3 single crystals. <i>Journal of Applied Physics</i> , 2005 , 97, 103720	2.5	27
172	Thin-film ferromagnetic semiconductors based on Sb2⊠VxTe3 with TC of 177K. <i>Applied Physics Letters</i> , 2005 , 87, 112503	3.4	40
171	Influence of point-defect scattering on the lattice thermal conductivity of solid solution Co(Sb1\(\text{Asx}\)3. <i>Physical Review B</i> , 2005 , 71,	3.3	61
170	Apparatus for Seebeck coefficient and electrical resistivity measurements of bulk thermoelectric materials at high temperature. <i>Review of Scientific Instruments</i> , 2005 , 76, 023901	1.7	81
169	Defect structure of Sb2MmxTe3 single crystals. <i>Journal of Solid State Chemistry</i> , 2005 , 178, 2907-2912	3.3	19
168	Growth and transport properties of Sb2NvxTe3 thin films on sapphire substrates. <i>Journal of Crystal Growth</i> , 2005 , 283, 309-314	1.6	19
167	Transport coefficients of titanium-doped Sb2Te3 single crystals. <i>Journal of Solid State Chemistry</i> , 2005 , 178, 1301-1307	3.3	45
166	Effects of Antimony on the Thermoelectric Properties of the Cubic Pb9.6SbyTe10-xSexMaterials. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 886, 1		
165	Nanostructuring and its Influence on the Thermoelectric Properties of the AgSbTe2-SnTe Quaternary System. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 886, 1		2
164	Phase Segregation and Thermoelectric Properties of AgPbmSbTem+2 m=2, 4, 6, and 8. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 886, 1		3
163	Thermoelectric performance of films in the bismuth-tellurium and antimony-tellurium systems. Journal of Applied Physics, 2005 , 97, 114903	2.5	92
162	Low-temperature ferromagnetic properties of the diluted magnetic semiconductor Sb2\(\mathbb{U}\)CrxTe3. <i>Physical Review B</i> , 2005 , 71,	3.3	86
161	Low-temperature transport properties of polycrystalline Ba8Ga16Sn30. <i>Journal of Materials Research</i> , 2004 , 19, 3556-3559	2.5	14
160	Cubic AgPb(m)SbTe(2+m): bulk thermoelectric materials with high figure of merit. <i>Science</i> , 2004 , 303, 818-21	33.3	2481
159	Conduction band splitting and transport properties of Bi2Se3. <i>Journal of Solid State Chemistry</i> , 2004 , 177, 1704-1712	3.3	103
158	Lattice thermal conductivity of K2(Bi1\(\mathbb{B}\)Sbz)8Se13 solid solutions. <i>Journal of Applied Physics</i> , 2004 , 95, 4140-4146	2.5	13
157	A new thermoelectric material: CsBi4Te6. <i>Journal of the American Chemical Society</i> , 2004 , 126, 6414-28	16.4	157
156	Synthesis, Crystal Structure And Thermoelectric Properties of 张2Bi8Se13 Solid Solutions. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 793, 395		2

(2001-2003)

155	Effect of Sn substituting for Sb on the low-temperature transport properties of ytterbium-filled skutterudites. <i>Physical Review B</i> , 2003 , 67,	3.3	135
154	Thermoelectric Properties of the cubic AgPb10SbTe12. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 793, 220		1
153	Magnetic and transport properties of the V2VI3 diluted magnetic semiconductor Sb2\(\text{M}\)mxTe3. Journal of Applied Physics, 2003 , 94, 7631	2.5	33
152	Influence of electron-phonon interaction on the lattice thermal conductivity of Co1NNixSb3. <i>Physical Review B</i> , 2002 , 65,	3.3	77
151	Highly anisotropic crystal growth and thermoelectric properties of K2Bi8\SbxSe13 solid solutions: Band gap anomaly at low x. <i>Journal of Applied Physics</i> , 2002 , 92, 965-975	2.5	39
150	Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12 doped with Ni. <i>Journal of Applied Physics</i> , 2002 , 91, 3698-3705	2.5	208
149	Effect of Ni on the transport and magnetic properties of Co1\(\text{NixSb3}. \(\text{Physical Review B}, \text{ 2002}, 65, \)	3.3	75
148	Diluted magnetic semiconductors based on Sb2\(\text{V}\times\text{Te3}\) (0.01. <i>Physical Review B</i> , 2002 , 65,	3.3	113
147	Electrical conductivity and thermopower of CuBiO2 nanogranular films. <i>Applied Physics Letters</i> , 2002 , 81, 523-525	3.4	11
146	Transport Properties of Bi2⊠InxSe3 Single Crystals. <i>Journal of Solid State Chemistry</i> , 2001 , 160, 474-481	3.3	22
145	Preparation and some physical properties of tetradymite-type Sb2Te3 single crystals doped with CdS. <i>Journal of Crystal Growth</i> , 2001 , 222, 565-573	1.6	20
144	High-temperature thermoelectric properties of n-type BayNixCo4\(\mathbb{B}\)Sb12. <i>Journal of Materials Research</i> , 2001 , 16, 3343-3346	2.5	37
143	Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12. <i>Journal of Applied Physics</i> , 2001 , 90, 1864-1868	2.5	390
142	Chapter 5 Skutterudites: Prospective novel thermoelectrics. <i>Semiconductors and Semimetals</i> , 2001 , 69, 139-253	0.6	269
141	Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. <i>Applied Physics Letters</i> , 2001 , 79, 4165-4167	3.4	316
140	Modular Construction of A1+xM4-2xM \square +xSe15 (A = K, Rb; M = Pb, Sn; M \square = Bi, Sb): A New Class of Solid State Quaternary Thermoelectric Compounds. <i>Chemistry of Materials</i> , 2001 , 13, 756-764	9.6	42
139	A2Bi8Se13 (A = Rb, Cs), CsBi3.67Se6, and BaBi2Se4: New Ternary Semiconducting Bismuth Selenides. <i>Chemistry of Materials</i> , 2001 , 13, 622-633	9.6	39
138	Thermoelectric Properties of K2Bi8⊠SbxSe13 Solid Solutions and Se Doping. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 691, 1		1

Smoothening of (001) and (111) Cu films epitaxially grown on Si substrates. Materials Research 137 Society Symposia Proceedings, 2000, 648, 1 Epitaxial growth of (001) and (111) Ni films on MgO substrates. Materials Research Society Symposia 136 *Proceedings*, **2000**, 648, 1 Structure and Thermoelectric Properties of Ba6Ge25⊠, Ba6Ge23Sn2, and Ba6Ge22In3: Zintl Phases 87 135 3.3 with a Chiral Clathrate Structure. Journal of Solid State Chemistry, 2000, 153, 321-329 Crystal Growth of Ternary and Quaternary Alkali Metal Bismuth Chalcogenides Using Bridgman 134 12 Technique. Materials Research Society Symposia Proceedings, 2000, 626, 881 The Influence of Ni on the Transport Properties of CoSb3. Materials Research Society Symposia 133 1 Proceedings, 2000, 626, 1031 Smoothening of Cu films grown on Si(001). Applied Physics Letters, 2000, 76, 724-726 16 132 3.4 CsBi(4)Te(6): A high-performance thermoelectric material for low-temperature applications. 131 751 33.3 Science, 2000, 287, 1024-7 Iron valence in skutterudites: Transport and magnetic properties of Co1\(\text{IF} exSb3. \) Physical Review 130 3.3 90 B, 2000, 63, Temperature dependence of the magnetization reversal in Co(fcc)BNf2o(poly hcp) structures. 8 129 2.5 Journal of Applied Physics, **1999**, 85, 5765-5767 Use of magnetocrystalline anisotropy in spin-dependent tunneling. Applied Physics Letters, 1999, 128 3.4 25 75, 1941-1943 Ba4In8Sb16: Thermoelectric Properties of a New Layered Zintl Phase with Infinite Zigzag Sb Chains 127 9.6 63 and Pentagonal Tubes. Chemistry of Materials, 1999, 11, 3154-3159 Transport properties of pure and doped MNiSn (M=Zr, Hf). Physical Review B, 1999, 59, 8615-8621 126 507 3.3 Structure and Lattice Thermal Conductivity of Fractionally Filled Skutterudites: Solid Solutions of 125 7.4 301 Fully Filled and Unfilled End Members. Physical Review Letters, 1998, 80, 3551-3554 Thermoelectric Properties of the Cubic Family of Compounds AgPbBiQ3 (Q = S, Se, Te). Very Low 124 4 Thermal Conductivity Materials. Materials Research Society Symposia Proceedings, 1998, 545, 123 Observed Properties and Electronic Structure of RNiSb Compounds (R = Ho, Er, Tm, Yb and Y). 123 32 Potential Thermoelectric Materials. Materials Research Society Symposia Proceedings, 1998, 545, 421 Heat conduction of (111) Co/Cu superlattices. Journal of Applied Physics, 1997, 81, 4586-4588 122 2.5 11 Transport Properties of Partially-Filled CeyCo4Sb12. Materials Research Society Symposia 8 121 Proceedings, 1997, 478, 315 Searching for New Thermoelectrics in Chemically and Structurally Complex Bismuth Chalcogenides. 120 10 Materials Research Society Symposia Proceedings, 1997, 478, 333

119	Magnetic and Electronic Transport Properties of Single Crystal La0.64Pb0.36MnO3. <i>Materials Research Society Symposia Proceedings</i> , 1997 , 494, 317		
118	Low-temperature transport properties of the filled skutterudites CeFe4\(\mathbb{Q}\) Cox Sb12s. <i>Physical Review B</i> , 1997 , 55, 1476-1480	3.3	211
117	Transport Properties of Bi2S3 and the Ternary Bismuth Sulfides KBi6.33S10 and K2Bi8S13. <i>Chemistry of Materials</i> , 1997 , 9, 1655-1658	9.6	181
116	Cerium filling and doping of cobalt triantimonide. <i>Physical Review B</i> , 1997 , 56, 7376-7383	3.3	328
115	Magnetothermal conductivity of La0.8Ca0.2MnO3. <i>Physical Review B</i> , 1997 , 55, 15471-15474	3.3	44
114	High Thermopower and Low Thermal Conductivity in Semiconducting Ternary K B iBe Compounds. Synthesis and Properties of K2Bi8Se13 and K2.5Bi8.5Se14 and Their Sb Analogues. <i>Chemistry of Materials</i> , 1997 , 9, 3060-3071	9.6	138
113	Synthesis and Thermoelectric Properties of the New Ternary Bismuth Sulfides KBi6.33S10 and K2Bi8S13. <i>Chemistry of Materials</i> , 1996 , 8, 1465-1474	9.6	113
112	Morphology transition and layer-by-layer growth of Rh(111). <i>Physical Review Letters</i> , 1996 , 76, 3164-316	5 7 .4	105
111	Large magnetothermopower in La0.67Ca0.33MnO3 films. <i>Physical Review B</i> , 1996 , 53, 5094-5097	3.3	60
110	Low Temperature Annealing of Rh (111) Surfaces. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 440, 317		
109	Thermoelectric Properties of RhSb3 Crystals and Thin Films. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 452, 1037		6
108	Conductivity peak, relaxation dynamics, and superconducting gap of YBa2Cu3O7 studied by terahertz and femtosecond optical spectroscopies. <i>Physical Review B</i> , 1996 , 54, 1355-1365	3.3	17
107	Heat conduction in Ba1⊠KxBiO3. <i>Journal of Superconductivity and Novel Magnetism</i> , 1995 , 8, 445-448		
106	A scanning tunneling microscopy study of epitaxial Ge growth. <i>Journal of Crystal Growth</i> , 1995 , 150, 960) -<u>9</u>63	3
105	. IEEE Transactions on Applied Superconductivity, 1995 , 5, 1970-1974	1.8	1
104	Impulsive light scattering by coherent phonons in LaAlO3: Disorder and boundary effects. <i>Physical Review Letters</i> , 1995 , 75, 334-337	7.4	39
103	Magnetothermal conductivity of Ba1-xKxBiO3 crystals. <i>Physical Review B</i> , 1995 , 51, 6171-6174	3.3	1
102	Low-temperature transport properties of p-type CoSb3. <i>Physical Review B</i> , 1995 , 51, 9622-9628	3.3	298

101	Pulsed terahertz-beam spectroscopy as a probe of the thermal and quantum response of YBa2Cu3O7Isuperfluid. <i>Applied Physics Letters</i> , 1995 , 67, 3022-3024	3.4	5
100	Terahertz transmission of a Ba1-xKxBiO3 film probed by coherent time-domain spectroscopy. <i>Physical Review B</i> , 1995 , 52, 3607-3613	3.3	11
99	Morphological Transition of Epitaxial Rhodium (111). <i>Materials Research Society Symposia Proceedings</i> , 1995 , 399, 243		1
98	Scaling behavior of giant magnetotransport effects in Co/Cu superlattices. <i>Physical Review Letters</i> , 1994 , 72, 740-743	7.4	43
97	Langevin-like giant magnetoresistance in Co-Cu superlattices. <i>Physical Review B</i> , 1994 , 49, 1521-1523	3.3	57
96	Positive giant magnetoresistance in Dy/Sc superlattices. <i>Physical Review Letters</i> , 1994 , 72, 3084-3087	7.4	37
95	Influence of neutron irradiation on the thermal conductivity of vapor-deposited diamond. <i>Journal of Applied Physics</i> , 1994 , 76, 1515-1517	2.5	6
94	An alternate route to giant magnetoresistance in MBE-grown Collu superlattices (invited). <i>Journal of Applied Physics</i> , 1994 , 75, 6174-6177	2.5	28
93	The peak in the thermal conductivity of Cu-O superconductors: Electronic or phononic origin?. <i>Journal of Superconductivity and Novel Magnetism</i> , 1994 , 7, 323-329		21
92	Glasslike thermal transport in heavily irradiated diamond. <i>Physical Review B</i> , 1993 , 48, 3037-3041	3.3	10
91	Structural transition in epitaxial Co-Cr superlattices. <i>Physical Review B</i> , 1993 , 47, 5500-5503	3.3	37
90	Correlating optical absorption and thermal conductivity in diamond. <i>Applied Physics Letters</i> , 1993 , 63, 165-167	3.4	19
89	Transmission of phonons through grain boundaries in diamond films. <i>Applied Physics Letters</i> , 1993 , 62, 1085-1087	3.4	34
88	Ultrafast nonequilibrium carrier relaxation in single-crystal Nd1.85Ce0.15CuO4¶. <i>Applied Physics Letters</i> , 1993 , 63, 979-981	3.4	16
87	High-Field Giant Magnetoresistance in Co-Cu Superlattices. <i>Materials Research Society Symposia Proceedings</i> , 1993 , 313, 35		3
86	YBa2Cu3O7Ifilms: Calculation of the thermal conductivity and phonon mean-free path. <i>Journal of Applied Physics</i> , 1992 , 72, 4788-4791	2.5	23
85	THERMAL CONDUCTIVITY OF HIGH-TEMPERATURE SUPERCONDUCTORS 1992 , 159-283		25
84	MBE-Grown Epitaxial Co/Cr Superlattices. <i>Materials Research Society Symposia Proceedings</i> , 1991 , 231, 385		

83	Thermal conductivity of single crystal lanthanum cuprates at very low temperature. <i>Solid State Communications</i> , 1991 , 77, 773-776	1.6	9
82	Thermal conductivity of Tl2Ba2Ca2Cu3O10 ceramics from 300 K down to 0.1 K. <i>Physica C:</i> Superconductivity and Its Applications, 1991 , 177, 23-26	1.3	15
81	Subpicosecond time-resolved studies of coherent phonon oscillations in thin-film YBa2Cu3O6+x (x. <i>Applied Physics Letters</i> , 1991 , 58, 980-982	3.4	83
80	Thermoelectric power of Ba1-xKxBiO3. <i>Physical Review B</i> , 1991 , 43, 7955-7959	3.3	15
79	Epitaxial strain, metastable structure, and magnetic anisotropy in Co-based superlattices (invited). <i>Journal of Applied Physics</i> , 1991 , 70, 5775-5779	2.5	14
78	Theoretical analysis of the thermal conductivity of YBa2Cu3O7- delta single crystals. <i>Physical Review B</i> , 1991 , 44, 9508-9513	3.3	82
77	Characteristics of Y-Ba-Cu-O superconductor films on GaAs with an Al2O3 or AlGaO3 buffer layer. <i>Applied Physics Letters</i> , 1991 , 58, 2704-2706	3.4	9
76	Effect of magnetic field on thermal conductivity of YBa2Cu3O7- delta single crystals. <i>Physical Review B</i> , 1991 , 43, 8721-8724	3.3	50
75	Thermal conductivity of YBa2Cu3O7- delta in a magnetic field: Can kappa (H) probe the vortex state?. <i>Physical Review Letters</i> , 1991 , 67, 3856-3859	7.4	32
74	Thermal conductivity of high-T c superconductors. <i>Journal of Superconductivity and Novel Magnetism</i> , 1990 , 3, 337-389		137
73	Low-temperature electronic transport and the Coulomb blockade in oxidized films of bismuth. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1990 , 148, 110-114	2.3	3
72	Physical and electromagnetic properties of Y-Ba-Cu-O superconductors synthesized with peroxides. <i>Journal of Applied Physics</i> , 1990 , 67, 7488-7492	2.5	3
71	Magnetic anisotropy in epitaxial Co superlattices. <i>Physical Review B</i> , 1990 , 42, 1066-1069	3.3	191
70	Thermal conductivity of Ba-K-Bi-O: A contrast to copper oxide superconductors. <i>Physical Review B</i> , 1990 , 42, 2684-2687	3.3	13
69	Femtosecond optical absorption studies of nonequilibrium electronic processes in high Tc superconductors. <i>Applied Physics Letters</i> , 1990 , 57, 1696-1698	3.4	92
68	Magnetoresistance and Hall effect in epitaxial Co-Au superlattices. <i>Physical Review B</i> , 1990 , 42, 4889-4	189323	38
67	Thermal conductivity of Bi-Sr-Ca-Cu-O superconductors: Correlation with the low-temperature specific-heat behavior. <i>Physical Review B</i> , 1989 , 39, 11559-11562	3.3	52
66	Electrical resistance and the time-dependent oxidation of semicontinuous bismuth films. <i>Journal of Applied Physics</i> , 1989 , 66, 2045-2048	2.5	13

65	Thermoelectric power and thermal conductivity of neutron-irradiated YBa2Cu3O7- delta. <i>Physical Review B</i> , 1989 , 40, 2694-2697	3.3	38
64	Epitaxial Co-Au superlattices. <i>Physical Review Letters</i> , 1989 , 62, 653-656	7.4	116
63	Thermal conductivity of YBa2Cu3O7- delta below 1 K: Evidence for normal-carrier transport well below Tc. <i>Physical Review B</i> , 1988 , 38, 2892-2895	3.3	30
62	Upper critical fields of periodic and quasiperiodic Nb-Ta superlattices. <i>Physical Review B</i> , 1988 , 38, 2326-	3 332	20
61	Magnetoresistance as a probe of superconducting islands in La-Sr-Cu-O. <i>Physical Review B</i> , 1988 , 37, 127	′ 3 1330	23
60	The anomalous thermal conductivity of La2-xSrxCuO4-yat very low temperatures. <i>Journal of Physics C: Solid State Physics</i> , 1988 , 21, L957-L963		12
59	High-Tc Superconductors: Evidence on the Electron?Phonon Interaction from Transport Measurements. <i>Australian Journal of Physics</i> , 1988 , 41, 597		9
58	Use of high-Tc superconductors for the determination of absolute thermoelectric power. <i>Journal of Applied Physics</i> , 1987 , 62, 4636-4638	2.5	22
57	Electronic transport in highly-doped La2-xSrxCuO4 superconductors. <i>Physical Review B</i> , 1987 , 36, 5676-5	5639	84
56	Pressure dependence of the c-axis resistivity of graphite. <i>Physical Review B</i> , 1987 , 35, 4483-4488	3.3	57
55	Electrical, structural, and superconducting properties of hydrogenated Nb-Ta superlattices. <i>Physical Review B</i> , 1987 , 36, 815-818	3.3	18
54	Thermal transport properties of YBa2Cu. <i>Physical Review B</i> , 1987 , 36, 5680-5683	3.3	202
53	Experimental evidence for multi-band conduction in highly-doped La-Sr-Cu-O superconductors. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1987 , 125, 421-424	2.3	11
52	Electrical resistivity of single crystal arsenic at very low temperatures. <i>Journal of Physics F: Metal Physics</i> , 1986 , 16, L103-L107		6
51	Upper critical field in anisotropic superconductors. <i>Physical Review B</i> , 1986 , 34, 4906-4908	3.3	25
50	Anisotropic heat conduction in diacetylenes. <i>Physical Review Letters</i> , 1986 , 57, 869-872	7.4	35
49	Stacking structure and superconductivity in ruthenium-iridium bicrystal superlattices. <i>Physical Review B</i> , 1986 , 34, 2022-2025	3.3	16
48	Electronic transport in Mo/Ni superlattices. Superlattices and Microstructures, 1985, 1, 125-129	2.8	8

(1981-1985)

47	Thermal conductivity of tin-doped bismuth between 50 mK and 7K. <i>Journal of Physics C: Solid State Physics</i> , 1985 , 18, 3001-3010		3
46	Tin-doped bismuth: An inhomogeneous superconductor. <i>Physical Review B</i> , 1985 , 32, 88-97	3.3	6
45	Thermal conductivity and thermopower of graphite at very low temperatures. <i>Physical Review B</i> , 1985 , 31, 6721-6725	3.3	32
44	Thermal transport properties of SbCl5-graphite and of HOPG in the c-direction. <i>Synthetic Metals</i> , 1985 , 12, 91-96	3.6	14
43	Interplay of superconductivity, magnetism, and localization in Mo/Ni superlattices. <i>Physical Review B</i> , 1984 , 30, 453-455	3.3	43
42	T2 dependence of the in-plane resistivity of graphite at very low temperatures. <i>Physical Review B</i> , 1984 , 30, 1080-1082	3.3	28
41	High pressure properties of graphite and its intercalation compounds. <i>Advances in Physics</i> , 1984 , 33, 46	9158646	166
40	Growth of high purity single crystals of arsenic. <i>Journal of Crystal Growth</i> , 1983 , 62, 141-144	1.6	3
39	c-axis electrical resistivity of SbCl5-graphites. <i>Physical Review B</i> , 1983 , 27, 2477-2479	3.3	51
38	Unusual temperature dependence of the resistivity of exfoliated graphites. <i>Physical Review B</i> , 1983 , 27, 1326-1332	3.3	38
37	Thermal conductivity of arsenic single crystals from 2 to 300 K. <i>Physical Review B</i> , 1983 , 28, 4242-4246	3.3	12
36	Thermopower measurements on arsenic from 2 to 300 K. <i>Physical Review B</i> , 1982 , 26, 6349-6354	3.3	5
35	Commensurate-incommensurate transitions in SbCl5 intercalated graphites. <i>Physical Review B</i> , 1982 , 26, 5250-5253	3.3	48
34	Thermopower of exfoliated graphites between 1.7 and 300 K. <i>Physical Review B</i> , 1982 , 25, 4167-4172	3.3	24
33	Thermal transport properties of SbCl5 graphite. <i>Physical Review B</i> , 1982 , 26, 3312-3319	3.3	45
32	The C-axis electrical resistivity of highly oriented pyrolytic graphite. <i>The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties</i> , 1981 , 44, 427-430		26
31	Size dependence of the transport properties of trigonal bismuth. <i>Physical Review B</i> , 1981 , 23, 449-452	3.3	12
30	Pressure enhancement of the electrical conductivity of graphite intercalation compounds. <i>Journal of Physics C: Solid State Physics</i> , 1981 , 14, L911-L913		5

29	Thermal conductivity of several exfoliated graphites from 2 k to 300 k. <i>Cryogenics</i> , 1980 , 20, 445-447	1.8	16
28	Electronic transport in tungsten and iron-doped tungsten below 1 K. <i>Journal of Low Temperature Physics</i> , 1979 , 36, 539-566	1.3	13
27	Thermopower of tin-doped bismuth from 50 mK to 25K. Journal of Physics F: Metal Physics, 1979, 9, 2399	9-2410) 15
26	Low-temperature resistivity of silver. <i>Journal of Physics F: Metal Physics</i> , 1979 , 9, L1-L5		47
25	Thermal conductivity of bismuth at ultralow temperatures. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1978 , 68, 74-76	2.3	12
24	Thermopower and thermal conductivity of arsenic from 8K down to 0.3K. <i>Journal of Physics F: Metal Physics</i> , 1978 , 8, 2559-2567		8
23	Transport properties of palladium from 40 mK to 6K. Journal of Physics F: Metal Physics, 1978, 8, 865-871	I	12
22	Thermopower measurements on bismuth from 9K down to 40 mK. <i>Journal of Physics F: Metal Physics</i> , 1978 , 8, 1979-1989		20
21	Transport properties of very dilute Pd Fe alloys from 0.05 to 5 K. <i>Physical Review B</i> , 1978 , 18, 3884-3889	3.3	22
20	Superconductivity in Lightly Doped Crystalline Bismuth. <i>Physical Review Letters</i> , 1978 , 40, 1518-1521	7.4	17
19	A resistivity minimum in tungsten and its correlation with thermoelectric anomalies. <i>Journal of Physics F: Metal Physics</i> , 1977 , 7, 1691-1698		5
18	High-Precision, Ultralow-Temperature Resistivity Measurements on Bismuth. <i>Physical Review Letters</i> , 1977 , 39, 491-494	7.4	37
17	Ultra-low temperature transport anomalies in air annealed Pt. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1977 , 61, 344-346	2.3	11
16	Electron transport properties of palladium-ruthenium alloys from 50 mK to 4.2 K. <i>Journal of Low Temperature Physics</i> , 1977 , 29, 487-498	1.3	13
15	Phonon-Drag Generated Umkehreffect in Bismuth. <i>Physica Status Solidi (B): Basic Research</i> , 1976 , 75, K137-K141	1.3	2
14	Thermomagnetic effects in tin-doped bismuth. <i>Physica Status Solidi (B): Basic Research</i> , 1975 , 68, 709-71	71.3	5
13	Low-Field Thermomagnetic Tensor for the Bi-Like Band Structure. <i>Physica Status Solidi (B): Basic Research</i> , 1975 , 70, 219-225	1.3	3
12	The thermal conductivity of fibre-reinforced concrete. <i>Cement and Concrete Research</i> , 1974 , 4, 497-509	10.3	17

LIST OF PUBLICATIONS

11	The Magneto-Seebeck Coefficient of Bismuth Single Crystals. <i>Physica Status Solidi (B): Basic Research</i> , 1974 , 63, 163-169	1.3	15
10	Separation of the Electronic and Lattice Thermal Conductivities in Bismuth Crystals. <i>Physica Status Solidi (B): Basic Research</i> , 1974 , 65, 765-772	1.3	60
9	Measurement of heat flow by means of the Nernst effect. <i>Journal of Physics E: Scientific Instruments</i> , 1972 , 5, 313-314		2
8	The Nernst effect in Cd3As2-NiAs. <i>Journal Physics D: Applied Physics</i> , 1972 , 5, 1352-1357	3	9
7	A comparison of thermomagnetic materials for use at room temperature. <i>Journal Physics D: Applied Physics</i> , 1972 , 5, 1478-1488	3	12
6	Complex bismuth chalcogenides as thermoelectrics		1
5	Transport properties of ZrNiSn-based intermetallics		3
4	Cerium filling and lattice thermal conductivity of skutterudites		3
3	Skutterudites: promising power conversion thermoelectrics		2
2	High temperature thermoelectric properties of MNiSn (M=Zr, Hf)		1

1 Nanosession: Calorics99-107