Ctirad Uher

List of Publications by Citations

Source: https://exaly.com/author-pdf/3961396/ctirad-uher-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

38,821 496 184 92 h-index g-index papers citations 8.8 43,383 7.28 511 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
496	Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. <i>Nature</i> , 2014 , 508, 373-7	50.4	3074
495	Cubic AgPb(m)SbTe(2+m): bulk thermoelectric materials with high figure of merit. <i>Science</i> , 2004 , 303, 818-21	33.3	2481
494	Copper ion liquid-like thermoelectrics. <i>Nature Materials</i> , 2012 , 11, 422-5	27	1339
493	Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. <i>Science</i> , 2016 , 351, 141-4	33.3	1237
492	Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions. <i>Physical Review Letters</i> , 2012 , 108, 166601	7.4	854
491	Strained endotaxial nanostructures with high thermoelectric figure of merit. <i>Nature Chemistry</i> , 2011 , 3, 160-6	17.6	794
490	CsBi(4)Te(6): A high-performance thermoelectric material for low-temperature applications. <i>Science</i> , 2000 , 287, 1024-7	33.3	75 ¹
489	Stretchable nanoparticle conductors with self-organized conductive pathways. <i>Nature</i> , 2013 , 500, 59-63	3 50.4	613
488	All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. <i>Energy and Environmental Science</i> , 2013 , 6, 3346	35.4	532
487	Transport properties of pure and doped MNiSn (M=Zr, Hf). <i>Physical Review B</i> , 1999 , 59, 8615-8621	3.3	507
486	High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. <i>Journal of the American Chemical Society</i> , 2014 , 136, 7006-17	16.4	425
485	High Performance Thermoelectricity in Earth-Abundant Compounds Based on Natural Mineral Tetrahedrites. <i>Advanced Energy Materials</i> , 2013 , 3, 342-348	21.8	395
484	Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12. <i>Journal of Applied Physics</i> , 2001 , 90, 1864-1868	2.5	390
483	Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb(1-x)Sn(x)Te-PbS. <i>Journal of the American Chemical Society</i> , 2007 , 129, 9780-8	16.4	385
482	Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe-SrTe. <i>Nature Communications</i> , 2016 , 7, 12167	17.4	377
481	Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites. <i>Applied Physics Letters</i> , 2008 , 92, 182101	3.4	334
480	Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals. <i>Energy and Environmental Science</i> , 2016 , 9, 454-460	35.4	331

479	Cerium filling and doping of cobalt triantimonide. <i>Physical Review B</i> , 1997 , 56, 7376-7383	3.3	328
478	Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2 Se1-x Ix. <i>Advanced Materials</i> , 2013 , 25, 6607-12	24	319
477	Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. <i>Applied Physics Letters</i> , 2001 , 79, 4165-4167	3.4	316
476	Codoping in SnTe: Enhancement of Thermoelectric Performance through Synergy of Resonance Levels and Band Convergence. <i>Journal of the American Chemical Society</i> , 2015 , 137, 5100-12	16.4	310
475	Nanostructuring and High Thermoelectric Efficiency in p-Type Ag(Pb1 lySny)mSbTe2 + m. <i>Advanced Materials</i> , 2006 , 18, 1170-1173	24	303
474	Recent advances in high-performance bulk thermoelectric materials. <i>International Materials Reviews</i> , 2016 , 61, 379-415	16.1	302
473	Structure and Lattice Thermal Conductivity of Fractionally Filled Skutterudites: Solid Solutions of Fully Filled and Unfilled End Members. <i>Physical Review Letters</i> , 1998 , 80, 3551-3554	7.4	301
472	Low-temperature transport properties of p-type CoSb3. <i>Physical Review B</i> , 1995 , 51, 9622-9628	3.3	298
471	On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory Experiment perspective. <i>Npj Computational Materials</i> , 2016 , 2,	10.9	290
470	Valence Band Modification and High Thermoelectric Performance in SnTe Heavily Alloyed with MnTe. <i>Journal of the American Chemical Society</i> , 2015 , 137, 11507-16	16.4	289
469	High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures. <i>Journal of the American Chemical Society</i> , 2011 , 133, 16588-97	16.4	289
468	High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase. <i>Applied Physics Letters</i> , 2009 , 94, 102114	3.4	285
467	High thermoelectric performance via hierarchical compositionally alloyed nanostructures. <i>Journal of the American Chemical Society</i> , 2013 , 135, 7364-70	16.4	281
466	Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe. <i>Energy and Environmental Science</i> , 2015 , 8, 267-277	35.4	279
465	Chapter 5 Skutterudites: Prospective novel thermoelectrics. <i>Semiconductors and Semimetals</i> , 2001 , 69, 139-253	0.6	269
464	Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping. Journal of the American Chemical Society, 2014 , 136, 11412-9	16.4	259
463	Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing. <i>Nature Communications</i> , 2014 , 5, 4908	17.4	243
462	Mechanically Robust BiSbTe Alloys with Superior Thermoelectric Performance: A Case Study of Stable Hierarchical Nanostructured Thermoelectric Materials. <i>Advanced Energy Materials</i> , 2015 , 5, 1401.	3 3 1.8	232

461	Thermoelectric Devices for Power Generation: Recent Progress and Future Challenges . <i>Advanced Engineering Materials</i> , 2016 , 18, 194-213	3.5	218
460	A Facile Hydrothermal Synthesis of Iron Oxide Nanoparticles with Tunable Magnetic Properties. Journal of Physical Chemistry C, 2009 , 113, 13593-13599	3.8	215
459	Enhanced Thermoelectric Properties in the Counter-Doped SnTe System with Strained Endotaxial SrTe. <i>Journal of the American Chemical Society</i> , 2016 , 138, 2366-73	16.4	213
458	High-performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds. <i>Advanced Materials</i> , 2014 , 26, 3848-53	24	211
457	Low-temperature transport properties of the filled skutterudites CeFe4\(\mathbb{B}\) Cox Sb12s. <i>Physical Review B</i> , 1997 , 55, 1476-1480	3.3	211
456	Thermoelectric properties of Ag-doped Cu2Se and Cu2Te. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 124	1718;	210
455	Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12 doped with Ni. <i>Journal of Applied Physics</i> , 2002 , 91, 3698-3705	2.5	208
454	Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se. <i>Energy and Environmental Science</i> , 2017 , 10, 1668-1676	35.4	207
453	Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2673-2686	16.4	206
452	Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys. <i>Journal of the American Chemical Society</i> , 2011 , 133, 18843-52	16.4	205
451	Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 8618-22	16.4	203
45 ⁰	Thermal transport properties of YBa2Cu. <i>Physical Review B</i> , 1987 , 36, 5680-5683	3.3	202
449	Thermoelectrics with earth abundant elements: high performance p-type PbS nanostructured with SrS and CaS. <i>Journal of the American Chemical Society</i> , 2012 , 134, 7902-12	16.4	197
448	Magnetic anisotropy in epitaxial Co superlattices. <i>Physical Review B</i> , 1990 , 42, 1066-1069	3.3	191
447	Multi-Scale Microstructural Thermoelectric Materials: Transport Behavior, Non-Equilibrium Preparation, and Applications. <i>Advanced Materials</i> , 2017 , 29, 1602013	24	182
446	Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. <i>Energy and Environmental Science</i> , 2017 , 10, 956-963	35.4	181
445	Transport Properties of Bi2S3 and the Ternary Bismuth Sulfides KBi6.33S10 and K2Bi8S13. <i>Chemistry of Materials</i> , 1997 , 9, 1655-1658	9.6	181
444	Nanostructures versus solid solutions: low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials. <i>Journal of the American Chemical Society</i> 2006 128 14347-55	16.4	173

443	High pressure properties of graphite and its intercalation compounds. Advances in Physics, 1984, 33, 469	9158646	166
442	Strong Reduction of Thermal Conductivity in Nanostructured PbTe Prepared by Matrix Encapsulation. <i>Chemistry of Materials</i> , 2006 , 18, 4993-4995	9.6	164
441	Ultrahigh Thermoelectric Performance in Mosaic Crystals. Advanced Materials, 2015, 27, 3639-44	24	163
440	A new thermoelectric material: CsBi4Te6. <i>Journal of the American Chemical Society</i> , 2004 , 126, 6414-28	16.4	157
439	High temperature Seebeck coefficient metrology. <i>Journal of Applied Physics</i> , 2010 , 108, 121101	2.5	156
438	High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe. <i>Energy and Environmental Science</i> , 2018 , 11, 1520-1535	35.4	155
437	Thermal conductivity of a metal-organic framework (MOF-5): Part II. Measurement. <i>International Journal of Heat and Mass Transfer</i> , 2007 , 50, 405-411	4.9	154
436	High thermoelectric figure of merit in nanostructured p-type PbTeMTe (M = Ca, Ba). <i>Energy and Environmental Science</i> , 2011 , 4, 4675	35.4	153
435	Exploring resonance levels and nanostructuring in the PbTe-CdTe system and enhancement of the thermoelectric figure of merit. <i>Journal of the American Chemical Society</i> , 2010 , 132, 5227-35	16.4	153
434	High Thermopower and Low Thermal Conductivity in Semiconducting Ternary K B iBe Compounds. Synthesis and Properties of 既2Bi8Se13 and K2.5Bi8.5Se14 and Their Sb Analogues. <i>Chemistry of Materials</i> , 1997 , 9, 3060-3071	9.6	138
433	Thermal conductivity of high-T c superconductors. <i>Journal of Superconductivity and Novel Magnetism</i> , 1990 , 3, 337-389		137
432	Effect of Sn substituting for Sb on the low-temperature transport properties of ytterbium-filled skutterudites. <i>Physical Review B</i> , 2003 , 67,	3.3	135
431	Phase transitions of Dirac electrons in bismuth. <i>Science</i> , 2008 , 321, 547-50	33.3	134
430	Entropy as a Gene-Like Performance Indicator Promoting Thermoelectric Materials. <i>Advanced Materials</i> , 2017 , 29, 1702712	24	130
429	Optimized Thermoelectric Properties of Sb-Doped Mg2(1+z)Si0.5 \(\bar{y}\)Sn0.5 Sby through Adjustment of the Mg Content. <i>Chemistry of Materials</i> , 2011 , 23, 5256-5263	9.6	127
428	Thermoelectric properties of Bi2O2Se. <i>Materials Chemistry and Physics</i> , 2010 , 119, 299-302	4.4	122
427	Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phonon phonon correlations. <i>Nature Physics</i> , 2013 , 9, 790-794	16.2	118
426	SnTeAgBiTe2 as an efficient thermoelectric material with low thermal conductivity. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 20849-20854	13	117

425	Rapid preparation method of bulk nanostructured Yb0.3Co4Sb12+y compounds and their improved thermoelectric performance. <i>Applied Physics Letters</i> , 2008 , 93, 252109	3.4	116
424	Epitaxial Co-Au superlattices. <i>Physical Review Letters</i> , 1989 , 62, 653-656	7.4	116
423	Rapid synthesis of high thermoelectric performance higher manganese silicide with in-situ formed nano-phase of MnSi. <i>Intermetallics</i> , 2011 , 19, 404-408	3.5	113
422	Diluted magnetic semiconductors based on Sb2⊠VxTe3 (0.01. <i>Physical Review B</i> , 2002 , 65,	3.3	113
421	Synthesis and Thermoelectric Properties of the New Ternary Bismuth Sulfides KBi6.33S10 and K2Bi8S13. <i>Chemistry of Materials</i> , 1996 , 8, 1465-1474	9.6	113
420	Enhanced thermoelectric properties of n-type Mg2.16(Si0.4Sn0.6)1 Sby due to nano-sized Sn-rich precipitates and an optimized electron concentration. <i>Journal of Materials Chemistry</i> , 2012 , 22, 13653		112
419	High figure of merit and thermoelectric properties of Bi-doped Mg2Si0.4Sn0.6 solid solutions. Journal of Solid State Chemistry, 2013 , 203, 333-339	3.3	108
418	The Role of Zn in Chalcopyrite CuFeS2: Enhanced Thermoelectric Properties of Cu1\(\textbf{Z}\) Tn Situ Nanoprecipitates. <i>Advanced Energy Materials</i> , 2017 , 7, 1601299	21.8	107
417	Morphology transition and layer-by-layer growth of Rh(111). <i>Physical Review Letters</i> , 1996 , 76, 3164-31	6₹. ₄	105
416	Concerted Rattling in CsAg5 Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 11431-6	16.4	105
415	Conduction band splitting and transport properties of Bi2Se3. <i>Journal of Solid State Chemistry</i> , 2004 , 177, 1704-1712	3.3	103
414	Structure and Transport Properties of Double-Doped CoSb2.75Ge0.25\(\mathbb{N}\)Tex (x = 0.125\(\mathbb{D}\).20) with in Situ Nanostructure. <i>Chemistry of Materials</i> , 2011 , 23, 2948-2955	9.6	102
413	Thermal conductivity in BiSbTe and the role of dense dislocation arrays at grain boundaries. <i>Science Advances</i> , 2018 , 4, eaar5606	14.3	102
412	In situ synthesis and thermoelectric properties of PbTegraphene nanocomposites by utilizing a facile and novel wet chemical method. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 12503	13	101
411	Highly anisotropic P3HT films with enhanced thermoelectric performance via organic small molecule epitaxy. <i>NPG Asia Materials</i> , 2016 , 8, e292-e292	10.3	101
410	Suppression of atom motion and metal deposition in mixed ionic electronic conductors. <i>Nature Communications</i> , 2018 , 9, 2910	17.4	97
409	High thermoelectric performance of mechanically robust n-type Bi2Te3⊠Sex prepared by combustion synthesis. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 6603-6613	13	97
408	Enhanced Figure-of-Merit in Se-Doped p-Type AgSbTe2 Thermoelectric Compound. <i>Chemistry of Materials</i> , 2010 , 22, 5521-5527	9.6	97

(1991-2010)

407	In situ nanostructure generation and evolution within a bulk thermoelectric material to reduce lattice thermal conductivity. <i>Nano Letters</i> , 2010 , 10, 2825-31	11.5	95
406	Advanced thermoelectrics governed by a single parabolic band: Mg2Si(0.3)Sn(0.7), a canonical example. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 6893-7	3.6	93
405	Large enhancements of thermopower and carrier mobility in quantum dot engineered bulk semiconductors. <i>Journal of the American Chemical Society</i> , 2013 , 135, 7486-95	16.4	93
404	Thermoelectric performance of films in the bismuth-tellurium and antimony-tellurium systems. <i>Journal of Applied Physics</i> , 2005 , 97, 114903	2.5	92
403	Femtosecond optical absorption studies of nonequilibrium electronic processes in high Tc superconductors. <i>Applied Physics Letters</i> , 1990 , 57, 1696-1698	3.4	92
402	High Thermoelectric Performance in SnTeAgSbTe2 Alloys from Lattice Softening, Giant Phonon Vacancy Scattering, and Valence Band Convergence. <i>ACS Energy Letters</i> , 2018 , 3, 705-712	20.1	90
401	High thermoelectric performance of p-BiSbTe compounds prepared by ultra-fast thermally induced reaction. <i>Energy and Environmental Science</i> , 2017 , 10, 2638-2652	35.4	90
400	Iron valence in skutterudites: Transport and magnetic properties of Co1 \square FexSb3. <i>Physical Review B</i> , 2000 , 63,	3.3	90
399	High Strength Conductive Composites with Plasmonic Nanoparticles Aligned on Aramid Nanofibers. <i>Advanced Functional Materials</i> , 2016 , 26, 8435-8445	15.6	89
398	Subtle Roles of Sb and S in Regulating the Thermoelectric Properties of N-Type PbTe to High Performance. <i>Advanced Energy Materials</i> , 2017 , 7, 1700099	21.8	88
397	Structure and Thermoelectric Properties of Ba6Ge25N, Ba6Ge23Sn2, and Ba6Ge22In3: Zintl Phases with a Chiral Clathrate Structure. <i>Journal of Solid State Chemistry</i> , 2000 , 153, 321-329	3.3	87
396	Low-temperature ferromagnetic properties of the diluted magnetic semiconductor Sb2\(\mathbb{Q}\)CrxTe3. <i>Physical Review B</i> , 2005 , 71,	3.3	86
395	Rapid preparation of CeFe4Sb12 skutterudite by melt spinning: rich nanostructures and high thermoelectric performance. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 12657	13	85
394	p-Type skutterudites RxMyFe3CoSb12 (R, MI=IBa, Ce, Nd, and Yb): Effectiveness of double-filling for the lattice thermal conductivity reduction. <i>Intermetallics</i> , 2011 , 19, 1747-1751	3.5	84
393	Electronic transport in highly-doped La2-xSrxCuO4 superconductors. <i>Physical Review B</i> , 1987 , 36, 5676-	5639	84
392	Subpicosecond time-resolved studies of coherent phonon oscillations in thin-film YBa2Cu3O6+x (x. <i>Applied Physics Letters</i> , 1991 , 58, 980-982	3.4	83
391	Multiscale calculations of thermoelectric properties of n-type Mg2Si1⊠Snx solid solutions. <i>Physical Review B</i> , 2012 , 85,	3.3	82
390	Theoretical analysis of the thermal conductivity of YBa2Cu3O7- delta single crystals. <i>Physical Review B</i> , 1991 , 44, 9508-9513	3.3	82

389	Apparatus for Seebeck coefficient and electrical resistivity measurements of bulk thermoelectric materials at high temperature. <i>Review of Scientific Instruments</i> , 2005 , 76, 023901	1.7	81
388	Ultra-fast synthesis and thermoelectric properties of Te doped skutterudites. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 17914-17918	13	78
387	Influence of electron-phonon interaction on the lattice thermal conductivity of Co1⊠NixSb3. <i>Physical Review B</i> , 2002 , 65,	3.3	77
386	High-efficiency half-Heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization. <i>Energy and Environmental Science</i> , 2019 , 12, 3390-3399	35.4	77
385	Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide. <i>Nature Communications</i> , 2014 , 5, 3640	17.4	76
384	Enhanced thermoelectric properties of Ba-filled skutterudites by grain size reduction and Ag nanoparticle inclusion. <i>Journal of Materials Chemistry</i> , 2012 , 22, 2958-2964		76
383	Soft phonon modes from off-center Ge atoms lead to ultralow thermal conductivity and superior thermoelectric performance in n-type PbSetese. <i>Energy and Environmental Science</i> , 2018 , 11, 3220-323	o ^{35.4}	75
382	Effect of Ni on the transport and magnetic properties of Co1\(\text{NixSb3}. \(\text{Physical Review B}, \text{ 2002}, 65, \)	3.3	75
381	Weak Electron Phonon Coupling and Deep Level Impurity for High Thermoelectric Performance Pb1 GaxTe. <i>Advanced Energy Materials</i> , 2018 , 8, 1800659	21.8	75
380	Manipulating the Combustion Wave during Self-Propagating Synthesis for High Thermoelectric Performance of Layered Oxychalcogenide Bi1\(\text{\textit{B}PbxCuSeO}. \) Chemistry of Materials, 2016 , 28, 4628-4640	9.6	71
379	Substitution of Bi for Sb and its Role in the Thermoelectric Properties and Nanostructuring in Ag1 \square Pb18MTe20 (M = Bi, Sb) (x = 0, 0.14, 0.3). <i>Chemistry of Materials</i> , 2008 , 20, 3512-3520	9.6	71
378	Thin film dilute ferromagnetic semiconductors Sb2\(\mathbb{R}\)CrxTe3 with a Curie temperature up to 190K. <i>Physical Review B</i> , 2006 , 74,	3.3	70
377	High Thermoelectric Performance in Supersaturated Solid Solutions and Nanostructured n-Type PbTe L eTe. <i>Advanced Functional Materials</i> , 2018 , 28, 1801617	15.6	69
376	Transport and mechanical properties of Yb-filled skutterudites. <i>Philosophical Magazine</i> , 2009 , 89, 1517-	1 <u>5.</u> 84	69
375	Ultralow thermal conductivity of 町u2Se by atomic fluidity and structure distortion. <i>Acta Materialia</i> , 2015 , 86, 247-253	8.4	67
374	Improvement in the Thermoelectric Figure of Merit by La/Ag Cosubstitution in PbTe. <i>Chemistry of Materials</i> , 2009 , 21, 1361-1367	9.6	66
373	Structure-transformation-induced abnormal thermoelectric properties in semiconductor copper selenide. <i>Materials Letters</i> , 2013 , 93, 121-124	3.3	65
372	High thermoelectric figure of merit and nanostructuring in bulk AgSbTe2. <i>Journal of Materials Chemistry</i> , 2010 , 20, 6138		65

(2007-2016)

371	Cr2Ge2Te6: High Thermoelectric Performance from Layered Structure with High Symmetry. <i>Chemistry of Materials</i> , 2016 , 28, 1611-1615	9.6	64
370	3D Printing of highly textured bulk thermoelectric materials: mechanically robust BiSbTe alloys with superior performance. <i>Energy and Environmental Science</i> , 2019 , 12, 3106-3117	35.4	64
369	Ba4In8Sb16: Thermoelectric Properties of a New Layered Zintl Phase with Infinite Zigzag Sb Chains and Pentagonal Tubes. <i>Chemistry of Materials</i> , 1999 , 11, 3154-3159	9.6	63
368	Enhanced ZT and attempts to chemically stabilize Cu2Se via Sn doping. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17225-17235	13	62
367	All-Scale Hierarchically Structured p-Type PbSe Alloys with High Thermoelectric Performance Enabled by Improved Band Degeneracy. <i>Journal of the American Chemical Society</i> , 2019 , 141, 4480-4486	16.4	62
366	Influence of point-defect scattering on the lattice thermal conductivity of solid solution Co(Sb1\(\text{NAsx}\)3. <i>Physical Review B</i> , 2005 , 71,	3.3	61
365	Large magnetothermopower in La0.67Ca0.33MnO3 films. <i>Physical Review B</i> , 1996 , 53, 5094-5097	3.3	60
364	Separation of the Electronic and Lattice Thermal Conductivities in Bismuth Crystals. <i>Physica Status Solidi (B): Basic Research</i> , 1974 , 65, 765-772	1.3	60
363	Chemical Insights into PbSe- x%HgSe: High Power Factor and Improved Thermoelectric Performance by Alloying with Discordant Atoms. <i>Journal of the American Chemical Society</i> , 2018 , 140, 18115-18123	16.4	60
362	Low effective mass and carrier concentration optimization for high performance p-type Mg2(1-x)Li2xSi0.3Sn0.7 solid solutions. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 23576-83	3.6	59
361	Thermal and electronic charge transport in bulk nanostructured Zr0.25Hf0.75NiSn composites with full-Heusler inclusions. <i>Journal of Solid State Chemistry</i> , 2011 , 184, 2948-2960	3.3	59
3 60	Low-temperature characterization and micropatterning of coevaporated Bi2Te3 and Sb2Te3 films. Journal of Applied Physics, 2008 , 104, 113710	2.5	57
359	Langevin-like giant magnetoresistance in Co-Cu superlattices. <i>Physical Review B</i> , 1994 , 49, 1521-1523	3.3	57
358	Pressure dependence of the c-axis resistivity of graphite. <i>Physical Review B</i> , 1987 , 35, 4483-4488	3.3	57
357	Influence of fullerene dispersion on high temperature thermoelectric properties of BayCo4Sb12-based composites. <i>Journal of Applied Physics</i> , 2007 , 102, 103709	2.5	56
356	Phase separation of full-Heusler nanostructures in half-Heusler thermoelectrics and vibrational properties from first-principles calculations. <i>Physical Review B</i> , 2015 , 92,	3.3	55
355	Microstructure and thermoelectric properties of CoSb2.75Ge0.25\(\mathbb{B}\)Tex prepared by rapid solidification. <i>Acta Materialia</i> , 2012 , 60, 3536-3544	8.4	55
354	Theoretical study of the filling fraction limits for impurities in CoSb3. <i>Physical Review B</i> , 2007 , 75,	3.3	55

353	Ultra-high average figure of merit in synergistic band engineered SnxNa1⊠Se0.9S0.1 single crystals. <i>Materials Today</i> , 2018 , 21, 501-507	21.8	55
352	Sodium-Doped Tin Sulfide Single Crystal: A Nontoxic Earth-Abundant Material with High Thermoelectric Performance. <i>Advanced Energy Materials</i> , 2018 , 8, 1800087	21.8	54
351	Structural order-disorder transitions and phonon conductivity of partially filled skutterudites. <i>Physical Review Letters</i> , 2010 , 105, 265901	7.4	53
350	Facile room temperature solventless synthesis of high thermoelectric performance Ag2Se via a dissociative adsorption reaction. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 23243-23251	13	52
349	High thermoelectric performance of In, Yb, Ce multiple filled CoSb3 based skutterudite compounds. <i>Journal of Solid State Chemistry</i> , 2012 , 193, 31-35	3.3	52
348	Nanostructured bulk YbxCo4Sb12with high thermoelectric performance prepared by the rapid solidification method. <i>Journal Physics D: Applied Physics</i> , 2009 , 42, 145409	3	52
347	Thermal conductivity of Bi-Sr-Ca-Cu-O superconductors: Correlation with the low-temperature specific-heat behavior. <i>Physical Review B</i> , 1989 , 39, 11559-11562	3.3	52
346	The high-temperature elastic moduli of polycrystalline PbTe measured by resonant ultrasound spectroscopy. <i>Acta Materialia</i> , 2008 , 56, 5954-5963	8.4	51
345	c-axis electrical resistivity of SbCl5-graphites. <i>Physical Review B</i> , 1983 , 27, 2477-2479	3.3	51
344	Pb7Bi4Se13: a lillianite homologue with promising thermoelectric properties. <i>Inorganic Chemistry</i> , 2015 , 54, 746-55	5.1	50
343	Thermoelectric Properties and Nanostructuring in the p-Type Materials NaPb18⊠SnxMTe20 (M = Sb, Bi). <i>Chemistry of Materials</i> , 2009 , 21, 1683-1694	9.6	50
342	Effect of magnetic field on thermal conductivity of YBa2Cu3O7- delta single crystals. <i>Physical Review B</i> , 1991 , 43, 8721-8724	3.3	50
341	Eco-friendly high-performance silicide thermoelectric materials. <i>National Science Review</i> , 2017 , 4, 611-6	26 0.8	49
340	Enhanced thermoelectric performance and novel nanopores in AgSbTe2 prepared by melt spinning. Journal of Solid State Chemistry, 2011 , 184, 109-114	3.3	49
339	Discordant nature of Cd in GeTe enhances phonon scattering and improves band convergence for high thermoelectric performance. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 1193-1204	13	49
338	Blocking Ion Migration Stabilizes the High Thermoelectric Performance in Cu Se Composites. <i>Advanced Materials</i> , 2020 , 32, e2003730	24	49
337	Enhancement of Thermoelectric Performance for n-Type PbS through Synergy of Gap State and Fermi Level Pinning. <i>Journal of the American Chemical Society</i> , 2019 , 141, 6403-6412	16.4	48
336	Low-temperature electrical resistivity and thermal conductivity of binary magnesium alloys. <i>Acta Materialia</i> , 2014 , 80, 288-295	8.4	48

335	Commensurate-incommensurate transitions in SbCl5 intercalated graphites. <i>Physical Review B</i> , 1982 , 26, 5250-5253	3.3	48
334	High thermoelectric performance of higher manganese silicides prepared by ultra-fast thermal explosion. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 12116-12122	7.1	47
333	PbTe P bSnS2 thermoelectric composites: low lattice thermal conductivity from large microstructures. <i>Energy and Environmental Science</i> , 2012 , 5, 8716	35.4	47
332	Low-temperature resistivity of silver. <i>Journal of Physics F: Metal Physics</i> , 1979 , 9, L1-L5		47
331	Enhanced Density-of-States Effective Mass and Strained Endotaxial Nanostructures in Sb-Doped PbCdTe Thermoelectric Alloys. <i>ACS Applied Materials & Description of the Physiology (Naterials & Descri</i>	9.5	46
330	Highly efficient (Inffe]k(GeTe)(3-3x) thermoelectric materials: a substitute for TAGS. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 15570-5	3.6	46
329	Low-temperature structural and transport anomalies in Cu2Se. <i>Physical Review B</i> , 2014 , 89,	3.3	46
328	Enhanced hole concentration through Ga doping and excess of Mg and thermoelectric properties of p-type Mg2(1+z)(Si0.3Sn0.7)1 Gay. <i>Intermetallics</i> , 2013 , 32, 352-361	3.5	46
327	Hierarchically structured TiO2 for Ba-filled skutterudite with enhanced thermoelectric performance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 20629-20635	13	45
326	Thermoelectric properties of p-type YbxLayFe2.7Co1.3Sb12 double-filled skutterudites. <i>Intermetallics</i> , 2013 , 32, 209-213	3.5	45
325	Microstructure and Thermoelectric Properties of Mechanically Robust PbTe-Si Eutectic Composites. <i>Chemistry of Materials</i> , 2010 , 22, 869-875	9.6	45
324	High thermoelectric figure of merit and improved mechanical properties in melt quenched PbTeLe and PbTeLe1\(\mathbb{B}\) six eutectic and hypereutectic composites. <i>Journal of Applied Physics</i> , 2009 , 105, 083718	2.5	45
323	Transport coefficients of titanium-doped Sb2Te3 single crystals. <i>Journal of Solid State Chemistry</i> , 2005 , 178, 1301-1307	3.3	45
322	Thermal transport properties of SbCl5 graphite. <i>Physical Review B</i> , 1982 , 26, 3312-3319	3.3	45
321	High Figure of Merit in Gallium-Doped Nanostructured n-Type PbTe-GeTe with Midgap States. Journal of the American Chemical Society, 2019 , 141, 16169-16177	16.4	44
320	Thermoelectric properties of P-type Yb-filled skutterudite YbxFeyCo4-ySb12. <i>Intermetallics</i> , 2011 , 19, 1390-1393	3.5	44
319	Magnetothermal conductivity of La0.8Ca0.2MnO3. <i>Physical Review B</i> , 1997 , 55, 15471-15474	3.3	44
318	A first-principles approach to half-Heusler thermoelectrics: Accelerated prediction and understanding of material properties. <i>Journal of Materiomics</i> , 2016 , 2, 104-113	6.7	43

317	Scaling behavior of giant magnetotransport effects in Co/Cu superlattices. <i>Physical Review Letters</i> , 1994 , 72, 740-743	7.4	43
316	Interplay of superconductivity, magnetism, and localization in Mo/Ni superlattices. <i>Physical Review B</i> , 1984 , 30, 453-455	3.3	43
315	High Thermoelectric Performance in PbSeNaSbSe2 Alloys from Valence Band Convergence and Low Thermal Conductivity. <i>Advanced Energy Materials</i> , 2019 , 9, 1901377	21.8	42
314	Anisotropic hybrid particles based on electrohydrodynamic co-jetting of nanoparticle suspensions. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 11894-9	3.6	42
313	Modular Construction of A1+xM4-2xM \overline{U} +xSe15 (A = K, Rb; M = Pb, Sn; M \sqsubseteq Bi, Sb): A New Class of Solid State Quaternary Thermoelectric Compounds. <i>Chemistry of Materials</i> , 2001 , 13, 756-764	9.6	42
312	Toward High-Thermoelectric-Performance Large-Size Nanostructured BiSbTe Alloys via Optimization of Sintering-Temperature Distribution. <i>Advanced Energy Materials</i> , 2016 , 6, 1600595	21.8	42
311	Enhanced thermoelectric performance of optimized Ba, Yb filled and Fe substituted skutterudite compounds. <i>Journal of Alloys and Compounds</i> , 2014 , 585, 168-172	5.7	41
310	Thermoelectric Properties of Triple-Filled Ba x Yb y In z Co4Sb12 Skutterudites. <i>Journal of Electronic Materials</i> , 2011 , 40, 570-576	1.9	41
309	Understanding the thermally activated charge transport in NaPbmSbQm+2 (Q = S, Se, Te) thermoelectrics: weak dielectric screening leads to grain boundary dominated charge carrier scattering. <i>Energy and Environmental Science</i> , 2020 , 13, 1509-1518	35.4	40
308	Optimization of the Electronic Band Structure and the Lattice Thermal Conductivity of Solid Solutions According to Simple Calculations: A Canonical Example of the Mg2Si1WJGexSny Ternary Solid Solution. <i>Chemistry of Materials</i> , 2016 , 28, 5538-5548	9.6	40
307	Thin-film ferromagnetic semiconductors based on Sb2\(\mathbb{N}\)VxTe3 with TC of 177K. <i>Applied Physics Letters</i> , 2005 , 87, 112503	3.4	40
306	Coexistence of Large Thermopower and Degenerate Doping in the Nanostructured Material Ago.85SnSb1.15Te3. <i>Chemistry of Materials</i> , 2006 , 18, 4719-4721	9.6	40
305	Enhancing thermopower and hole mobility in bulk p-type half-Heuslers using full-Heusler nanostructures. <i>Nanoscale</i> , 2013 , 5, 9419-27	7.7	39
304	Realization of high thermoelectric performance in p-type unfilled ternary skutterudites FeSb2+xTe1\(\text{W}\) via band structure modification and significant point defect scattering. <i>Acta Materialia</i> , 2013 , 61, 7693-7704	8.4	39
303	Highly anisotropic crystal growth and thermoelectric properties of K2Bi8\(\mathbb{B}\)SbxSe13 solid solutions: Band gap anomaly at low x. <i>Journal of Applied Physics</i> , 2002 , 92, 965-975	2.5	39
302	A2Bi8Se13 (A = Rb, Cs), CsBi3.67Se6, and BaBi2Se4: New Ternary Semiconducting Bismuth Selenides. <i>Chemistry of Materials</i> , 2001 , 13, 622-633	9.6	39
301	Impulsive light scattering by coherent phonons in LaAlO3: Disorder and boundary effects. <i>Physical Review Letters</i> , 1995 , 75, 334-337	7.4	39
300	Finite element analysis of temperature and stress fields during the selective laser melting process of thermoelectric SnTe. <i>Journal of Materials Processing Technology</i> , 2018 , 261, 74-85	5.3	38

(1986-2013)

299	Low-temperature transport properties of Tl-doped Bi2Te3 single crystals. <i>Physical Review B</i> , 2013 , 88,	3.3	38	
298	Thermoelectric power and thermal conductivity of neutron-irradiated YBa2Cu3O7- delta. <i>Physical Review B</i> , 1989 , 40, 2694-2697	3.3	38	
297	Magnetoresistance and Hall effect in epitaxial Co-Au superlattices. <i>Physical Review B</i> , 1990 , 42, 4889-48	8 92 3	38	
296	Unusual temperature dependence of the resistivity of exfoliated graphites. <i>Physical Review B</i> , 1983 , 27, 1326-1332	3.3	38	
295	Panoscopic approach for high-performance Te-doped skutterudite. NPG Asia Materials, 2017 , 9, e352-e3	3 5 2.3	37	
294	Phase Segregation and Superior Thermoelectric Properties of Mg2Si(1-x)Sb(x) (0 /k /L).025) Prepared by Ultrafast Self-Propagating High-Temperature Synthesis. ACS Applied Materials & amp; Interfaces, 2016, 8, 3268-76	9.5	37	
293	Thermodynamic analysis of the filling fraction limits for impurities in CoSb3 based on ab initio calculations. <i>Acta Materialia</i> , 2008 , 56, 1733-1740	8.4	37	
292	On the existence of Einstein oscillators and thermal conductivity in bulk metallic glass. <i>Applied Physics Letters</i> , 2006 , 89, 031924	3.4	37	
291	High-temperature thermoelectric properties of n-type BayNixCo4⊠Sb12. <i>Journal of Materials Research</i> , 2001 , 16, 3343-3346	2.5	37	
29 0	Structural transition in epitaxial Co-Cr superlattices. <i>Physical Review B</i> , 1993 , 47, 5500-5503	3.3	37	
289	Positive giant magnetoresistance in Dy/Sc superlattices. <i>Physical Review Letters</i> , 1994 , 72, 3084-3087	7.4	37	
288	High-Precision, Ultralow-Temperature Resistivity Measurements on Bismuth. <i>Physical Review Letters</i> , 1977 , 39, 491-494	7.4	37	
287	Understanding the combustion process for the synthesis of mechanically robust SnSe thermoelectrics. <i>Nano Energy</i> , 2018 , 44, 53-62	17.1	37	
286	Recent Advances in the Growth of BiBbIIeBe Thin Films. <i>Science of Advanced Materials</i> , 2011 , 3, 539-560	2.3	36	
285	Discordant nature of Cd in PbSe: off-centering and coreBhell nanoscale CdSe precipitates lead to high thermoelectric performance. <i>Energy and Environmental Science</i> , 2020 , 13, 200-211	35.4	36	
284	Ultra-fast non-equilibrium synthesis and phase segregation in InxSn1⊠Te thermoelectrics by SHS-PAS processing. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 8550-8558	7.1	35	
283	Grain boundary scattering effects on mobilities in p-type polycrystalline SnSe. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 10191-10200	7.1	35	
282	Anisotropic heat conduction in diacetylenes. <i>Physical Review Letters</i> , 1986 , 57, 869-872	7.4	35	

281	Origins of phase separation in thermoelectric (Ti, Zr, Hf)NiSn half-Heusler alloys from first principles. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13949-13956	13	34
280	Transport coefficients and defect structure of Sb2⊠AgxTe3 single crystals. <i>Journal of Physics and Chemistry of Solids</i> , 2006 , 67, 1457-1463	3.9	34
279	Transmission of phonons through grain boundaries in diamond films. <i>Applied Physics Letters</i> , 1993 , 62, 1085-1087	3.4	34
278	Thermal and electrical transport in ultralow density single-walled carbon nanotube networks. <i>Advanced Materials</i> , 2013 , 25, 2926-31	24	33
277	Doping and Defect Structure of Tetradymite-Type Crystals. <i>Journal of Electronic Materials</i> , 2010 , 39, 21	62:316	5433
276	Magnetic and transport properties of the V2№13 diluted magnetic semiconductor Sb2ᢂMnxTe3. Journal of Applied Physics, 2003, 94, 7631	2.5	33
275	Band structure engineering in highly degenerate tetrahedrites through isovalent doping. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17096-17103	13	33
274	Stretchable conductors by kirigami patterning of aramid-silver nanocomposites with zero conductance gradient. <i>Applied Physics Letters</i> , 2017 , 111, 161901	3.4	32
273	Observed Properties and Electronic Structure of RNiSb Compounds (R = Ho, Er, Tm, Yb and Y). Potential Thermoelectric Materials. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 545, 421		32
272	Thermal conductivity of YBa2Cu3O7- delta in a magnetic field: Can kappa (H) probe the vortex state?. <i>Physical Review Letters</i> , 1991 , 67, 3856-3859	7.4	32
271	Thermal conductivity and thermopower of graphite at very low temperatures. <i>Physical Review B</i> , 1985 , 31, 6721-6725	3.3	32
270	Low-Temperature Structure and Dynamics in Cu2Se. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 20293-7	20 29 8	31
269	Optimized thermoelectric performance of Bi2Te3 nanowires. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 6831	13	30
268	Thermal conductivity of YBa2Cu3O7- delta below 1 K: Evidence for normal-carrier transport well below Tc. <i>Physical Review B</i> , 1988 , 38, 2892-2895	3.3	30
267	Dual Alloying Strategy to Achieve a High Thermoelectric Figure of Merit and Lattice Hardening in p-Type Nanostructured PbTe. <i>ACS Energy Letters</i> , 2018 , 3, 2593-2601	20.1	30
266	Origin of Intrinsically Low Thermal Conductivity in Talnakhite CuFeS Thermoelectric Material: Correlations between Lattice Dynamics and Thermal Transport. <i>Journal of the American Chemical Society</i> , 2019 , 141, 10905-10914	16.4	29
265	Understanding the role and interplay of heavy-hole and light-hole valence bands in the thermoelectric properties of PbSe. <i>Physical Review B</i> , 2015 , 91,	3.3	29
264	Thermal stability of Mg2Si0.3Sn0.7 under different heat treatment conditions. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10381-10387	7.1	29

(2006-2017)

263	Thermoelectric performance of CuFeS2+2x composites prepared by rapid thermal explosion. <i>NPG Asia Materials</i> , 2017 , 9, e390-e390	10.3	29
262	Non-equilibrium synthesis and characterization of n-type Bi2Te2.7Se0.3 thermoelectric material prepared by rapid laser melting and solidification. <i>RSC Advances</i> , 2017 , 7, 21439-21445	3.7	28
261	Modification of Bulk Heterojunction and Cl Doping for High-Performance Thermoelectric SnSe/SnSe Nanocomposites. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 15793-15802	9.5	28
260	Promising bulk nanostructured Cu2Se thermoelectrics via high throughput and rapid chemical synthesis. <i>RSC Advances</i> , 2016 , 6, 111457-111464	3.7	28
259	Configuring pnicogen rings in skutterudites for low phonon conductivity. <i>Physical Review B</i> , 2012 , 86,	3.3	28
258	Synthesis and evaluation of lead telluride/bismuth antimony telluride nanocomposites for thermoelectric applications. <i>Journal of Solid State Chemistry</i> , 2011 , 184, 3195-3201	3.3	28
257	Crystal Structure, Charge Transport, and Magnetic Properties of MnSb2Se4. <i>European Journal of Inorganic Chemistry</i> , 2011 , 2011, 3969-3977	2.3	28
256	Lithium ions in the van der Waals gap of Bi2Se3 single crystals. <i>Journal of Solid State Chemistry</i> , 2010 , 183, 2813-2817	3.3	28
255	An alternate route to giant magnetoresistance in MBE-grown Collu superlattices (invited). <i>Journal of Applied Physics</i> , 1994 , 75, 6174-6177	2.5	28
254	T2 dependence of the in-plane resistivity of graphite at very low temperatures. <i>Physical Review B</i> , 1984 , 30, 1080-1082	3.3	28
253	Preparation of n-type Bi2Te3 thermoelectric materials by non-contact dispenser printing combined with selective laser melting. <i>Physica Status Solidi - Rapid Research Letters</i> , 2017 , 11, 1700067	2.5	27
252	Nonmagnetic In Substituted CuFe1IInxS2 Solid Solution Thermoelectric. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 27895-27902	3.8	27
251	Grain boundary engineering with nano-scale InSb producing high performance In Ce Co4Sb12+ skutterudite thermoelectrics. <i>Journal of Materiomics</i> , 2017 , 3, 273-279	6.7	27
250	n-type to p-type crossover in quaternary BixSbyPbzSe3 single crystals. <i>Journal of Applied Physics</i> , 2005 , 97, 103720	2.5	27
249	Intrinsically low thermal conductivity from a quasi-one-dimensional crystal structure and enhanced electrical conductivity network via Pb doping in SbCrSe3. <i>NPG Asia Materials</i> , 2017 , 9, e387-e387	10.3	26
248	Toward high thermoelectric performance p-type FeSb2.2Te0.8via in situ formation of InSb nanoinclusions. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 8372-8380	7.1	26
247	The mechanism of periodic layer formation during solid-state reaction between Mg and SiO2. <i>Intermetallics</i> , 2009 , 17, 920-926	3.5	26
246	Magnetic and transport properties of Sb2NFexTe3 (0. <i>Journal of Applied Physics</i> , 2006 , 99, 043901	2.5	26

245	The C-axis electrical resistivity of highly oriented pyrolytic graphite. <i>The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties</i> , 1981 , 44, 427-430		26
244	Fabrication and Thermoelectric Properties of n-Type CoSbTe Using Selective Laser Melting. <i>ACS Applied Materials & Discourse (Natural Materials & Discours)</i> 10, 13669-13674	9.5	25
243	The role of Ga in Ba0.30GaxCo4Sb12+x filled skutterudites. <i>Journal of Materials Chemistry</i> , 2012 , 22, 15628		25
242	Sb and Se Substitution in CsBi4Te6: The Semiconductors CsM4Q6(M = Bi, Sb; $Q = Te$, Se), Cs2Bi10Q15, and CsBi5Q8. <i>Chemistry of Materials</i> , 2012 , 24, 1854-1863	9.6	25
241	Coherent optical phonon spectroscopy studies of femtosecond-laser modified Sb2Te3 films. <i>Applied Physics Letters</i> , 2010 , 97, 171908	3.4	25
240	Use of magnetocrystalline anisotropy in spin-dependent tunneling. <i>Applied Physics Letters</i> , 1999 , 75, 1941-1943	3.4	25
239	Upper critical field in anisotropic superconductors. <i>Physical Review B</i> , 1986 , 34, 4906-4908	3.3	25
238	THERMAL CONDUCTIVITY OF HIGH-TEMPERATURE SUPERCONDUCTORS 1992 , 159-283		25
237	Vacancy-Based Defect Regulation for High Thermoelectric Performance in GeSbTe Compounds. <i>ACS Applied Materials & Defect Regulation</i> , 12, 19664-19673	9.5	24
236	Donor and acceptor impurity-driven switching of magnetic ordering in MnSb2\squasSnxSe4. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 6199-6210	7.1	24
235	Thermopower of exfoliated graphites between 1.7 and 300 K. <i>Physical Review B</i> , 1982 , 25, 4167-4172	3.3	24
234	Mechanochemical synthesis of high thermoelectric performance bulk Cu2X (X = S, Se) materials. <i>APL Materials</i> , 2016 , 4, 116110	5.7	24
233	Potential for superionic conductors in thermoelectric applications. <i>Current Opinion in Green and Sustainable Chemistry</i> , 2017 , 4, 58-63	7.9	23
232	Anisotropic thermal transport in MOF-5 composites. <i>International Journal of Heat and Mass Transfer</i> , 2015 , 82, 250-258	4.9	23
231	Free-carrier relaxation and lattice heating in photoexcited bismuth. <i>Physical Review B</i> , 2013 , 87,	3.3	23
230	Coexistence of high-T(c) ferromagnetism and n-type electrical conductivity in FeBi2Se4. <i>Journal of the American Chemical Society</i> , 2015 , 137, 691-8	16.4	23
229	Micro thermoelectric cooler: Planar multistage. <i>International Journal of Heat and Mass Transfer</i> , 2009 , 52, 1843-1852	4.9	23
228	Charge-Compensated n-Type Skutterudites. <i>Journal of Electronic Materials</i> , 2010 , 39, 2122-2126	1.9	23

227	Figure of merit of quaternary (Sb0.75Bi0.25)2\(\mathbb{B}\)InxTe3 single crystals. <i>Journal of Applied Physics</i> , 2008 , 104, 023701	2.5	23
226	YBa2Cu3O7Ifilms: Calculation of the thermal conductivity and phonon mean-free path. <i>Journal of Applied Physics</i> , 1992 , 72, 4788-4791	2.5	23
225	Magnetoresistance as a probe of superconducting islands in La-Sr-Cu-O. <i>Physical Review B</i> , 1988 , 37, 127	731330	23
224	Surface vibrational modes of the topological insulator Bi2Se3 observed by Raman spectroscopy. <i>Physical Review B</i> , 2017 , 95,	3.3	22
223	Preparation and thermoelectric properties of Ga-substituted p-type fully filled skutterudites CeFe4\(GaxSb12\). Journal of Solid State Chemistry, 2012 , 196, 203-208	3.3	22
222	Transport Properties of Bi2⊠InxSe3 Single Crystals. <i>Journal of Solid State Chemistry</i> , 2001 , 160, 474-481	3.3	22
221	Use of high-Tc superconductors for the determination of absolute thermoelectric power. <i>Journal of Applied Physics</i> , 1987 , 62, 4636-4638	2.5	22
220	Transport properties of very dilute Pd Fe alloys from 0.05 to 5 K. <i>Physical Review B</i> , 1978 , 18, 3884-3889	3.3	22
219	Contrasting SnTe-NaSbTe and SnTe-NaBiTe Thermoelectric Alloys: High Performance Facilitated by Increased Cation Vacancies and Lattice Softening. <i>Journal of the American Chemical Society</i> , 2020 , 142, 12524-12535	16.4	21
218	Coordination Assembly of Discoid Nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 8966-70	16.4	21
217	Thermoelectric Properties of the Compounds AgPbmLaTem+2 Chemistry of Materials, 2010 , 22, 876-88	33 .6	21
216	The peak in the thermal conductivity of Cu-O superconductors: Electronic or phononic origin?. <i>Journal of Superconductivity and Novel Magnetism</i> , 1994 , 7, 323-329		21
215	Origin of the Distinct Thermoelectric Transport Properties of Chalcopyrite ABTe2 (A = Cu, Ag; B = Ga, In). <i>Advanced Functional Materials</i> , 2020 , 30, 2005861	15.6	21
214	Thermoelectric transport properties of p-type silver-doped PbS within situAg2S nanoprecipitates. <i>Journal Physics D: Applied Physics</i> , 2014 , 47, 115303	3	20
213	Thermoelectric properties of Co0.9Fe0.1Sb3-based skutterudite nanocomposites with FeSb2 nanoinclusions. <i>Journal of Applied Physics</i> , 2011 , 109, 063722	2.5	20
212	Preparation and some physical properties of tetradymite-type Sb2Te3 single crystals doped with CdS. <i>Journal of Crystal Growth</i> , 2001 , 222, 565-573	1.6	20
211	Upper critical fields of periodic and quasiperiodic Nb-Ta superlattices. <i>Physical Review B</i> , 1988 , 38, 2326	-33332	20
210	Thermopower measurements on bismuth from 9K down to 40 mK. <i>Journal of Physics F: Metal Physics</i> , 1978 , 8, 1979-1989		20

209	Low temperature thermoelectric properties of p-type doped single-crystalline SnSe. <i>Applied Physics Letters</i> , 2018 , 112, 142102	3.4	19
208	Increase in the Figure of Merit by Cd-Substitution in Sn1\(\text{PbxTe} \) and Effect of Pb/Sn Ratio on Thermoelectric Properties. <i>Advanced Energy Materials</i> , 2012 , 2, 1218-1225	21.8	19
207	Lower Thermal Conductivity and Higher Thermoelectric Performance of Fe-Substituted and Ce, Yb Double-Filled p-Type Skutterudites. <i>Journal of Electronic Materials</i> , 2013 , 42, 1622-1627	1.9	19
206	. Journal of Microelectromechanical Systems, 2011 , 20, 1201-1210	2.5	19
205	Defect structure of Sb2⊠MnxTe3 single crystals. <i>Journal of Solid State Chemistry</i> , 2005 , 178, 2907-2912	3.3	19
204	Growth and transport properties of Sb2\(\mathbb{N}\)VxTe3 thin films on sapphire substrates. <i>Journal of Crystal Growth</i> , 2005 , 283, 309-314	1.6	19
203	Correlating optical absorption and thermal conductivity in diamond. <i>Applied Physics Letters</i> , 1993 , 63, 165-167	3.4	19
202	Ultralow thermal conductivity in diamondoid lattices: high thermoelectric performance in chalcopyrite Cu0.8+yAg0.2In1I/Te2. <i>Energy and Environmental Science</i> , 2020 , 13, 3693-3705	35.4	19
201	Interpreting the Combustion Process for High-Performance ZrNiSn Thermoelectric Materials. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 864-872	9.5	19
200	Absence of Nanostructuring in NaPb SbTe: Solid Solutions with High Thermoelectric Performance in the Intermediate Temperature Regime. <i>Journal of the American Chemical Society</i> , 2018 , 140, 7021-70	31 ^{6.4}	19
199	Crystal Structure and Thermoelectric Properties of the L Lillianite Homologue PbBiSe. <i>Inorganic Chemistry</i> , 2017 , 56, 261-268	5.1	18
198	Thermoelectric and thermal stability improvements in Nano-Cu2Se included Ag2Se. <i>Journal of Solid State Chemistry</i> , 2019 , 273, 122-127	3.3	18
197	Influence of substituting Sn for Sb on the thermoelectric transport properties of CoSb3-based skutterudites. <i>Journal of Applied Physics</i> , 2014 , 115, 103704	2.5	18
196	Measurement of transient atomic displacements in thin films with picosecond and femtometer resolution. <i>Structural Dynamics</i> , 2014 , 1, 034301	3.2	18
195	Structural modifications and non-monotonic carrier concentration in Bi2Se0.3Te2.7 by reversible electrochemical lithium reactions. <i>Acta Materialia</i> , 2013 , 61, 1508-1517	8.4	18
194	Nitrogen composition dependence of electron effective mass in GaAs1\(\mathbb{U}\)Nx. <i>Physical Review B</i> , 2010 , 82,	3.3	18
193	Electrical, structural, and superconducting properties of hydrogenated Nb-Ta superlattices. <i>Physical Review B</i> , 1987 , 36, 815-818	3.3	18
192	Direct Measurement of Anharmonic Decay Channels of a Coherent Phonon. <i>Physical Review Letters</i> , 2018 , 121, 125901	7.4	18

(1991-2013)

191	alloys. <i>Journal of Solid State Chemistry</i> , 2013 , 202, 70-76	3.3	17
190	Structure inhomogeneities, shallow defects, and charge transport in the series of thermoelectric materials K2Bi8\(\text{SbxSe13}. \) Journal of Applied Physics, 2006 , 100, 123704	2.5	17
189	Conductivity peak, relaxation dynamics, and superconducting gap of YBa2Cu3O7 studied by terahertz and femtosecond optical spectroscopies. <i>Physical Review B</i> , 1996 , 54, 1355-1365	3.3	17
188	Superconductivity in Lightly Doped Crystalline Bismuth. <i>Physical Review Letters</i> , 1978 , 40, 1518-1521	7.4	17
187	The thermal conductivity of fibre-reinforced concrete. Cement and Concrete Research, 1974, 4, 497-509	10.3	17
186	A comprehensive review on Bi 2 Te 3 -based thin films: Thermoelectrics and beyond 2022 , 1, 88-115		17
185	Anomalously Large Seebeck Coefficient of CuFeS2 Derives from Large Asymmetry in the Energy Dependence of Carrier Relaxation Time. <i>Chemistry of Materials</i> , 2020 , 32, 2639-2646	9.6	16
184	Tuning the temperature domain of phonon drag in thin films by the choice of substrate. <i>Physical Review Letters</i> , 2013 , 111, 046803	7.4	16
183	Thermoelectric Performance of Sb- and La-Doped Mg2Si0.5Ge0.5. <i>Journal of Electronic Materials</i> , 2012 , 41, 1589-1594	1.9	16
182	Smoothening of Cu films grown on Si(001). <i>Applied Physics Letters</i> , 2000 , 76, 724-726	3.4	16
181	Ultrafast nonequilibrium carrier relaxation in single-crystal Nd1.85Ce0.15CuO4 <i>Applied Physics Letters</i> , 1993 , 63, 979-981	3.4	16
180	Charlies about the second and an arrange of the second and the sec		
	Stacking structure and superconductivity in ruthenium-iridium bicrystal superlattices. <i>Physical Review B</i> , 1986 , 34, 2022-2025	3.3	16
179		3·3 1.8	16
179 178	Review B, 1986 , 34, 2022-2025		
	Review B, 1986, 34, 2022-2025 Thermal conductivity of several exfoliated graphites from 2 k to 300 k. Cryogenics, 1980, 20, 445-447	1.8	16
178	Review B, 1986, 34, 2022-2025 Thermal conductivity of several exfoliated graphites from 2 k to 300 k. Cryogenics, 1980, 20, 445-447 High-quality ultra-flat BiSbTe3 films grown by MBE. Journal of Crystal Growth, 2015, 410, 23-29 Engineering Temperature-Dependent Carrier Concentration in Bulk Composite Materials via	1.8	16
178 177	Thermal conductivity of several exfoliated graphites from 2 k to 300 k. <i>Cryogenics</i> , 1980 , 20, 445-447 High-quality ultra-flat BiSbTe3 films grown by MBE. <i>Journal of Crystal Growth</i> , 2015 , 410, 23-29 Engineering Temperature-Dependent Carrier Concentration in Bulk Composite Materials via Temperature-Dependent Fermi Level Offset. <i>Advanced Energy Materials</i> , 2018 , 8, 1701623 Ultralow Thermal Conductivity and High-Temperature Thermoelectric Performance in n-Type	1.8 1.6 21.8	16 15 15

173 Thermopower of tin-doped bismuth from 50 mK to 25K. Journal of Physics F: Metal Physics, 1979, 9, 2399-2410 15

The Magneto-Seebeck Coefficient of Bismuth Single Crystals. <i>Physica Status Solidi (B): Basic Research</i> , 1974, 63, 163-169 170 Ultralow Thermal Conductivity in Diamondoid Structures and High Thermoelectric Performance in (CuAg)(InGa)Te. <i>Journal of the American Chemical Society</i> , 2021, 143, 5978-5989 170 Concerted Rattling in CsAg5Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance. <i>Angewandte Chemie</i> , 2016, 128, 11603-11608 170 Chemical synthesis and enhanced electrical properties of bulk poly(3,4-ethylenedioxythiophene)/reduced graphene oxide nanocomposites. <i>Synthetic Metals</i> , 2017, 229, 65-71 170 Ultralow thermal conductivity of BaAg2SnSe4 and the effect of doping by Ga and In. <i>Materials Today Physics</i> , 2019, 9, 100098 170 Coherent magnetic nanoinclusions induce charge localization in half-Heusler alloys leading to high-Tc Ferromagnetism and enhanced thermoelectric performance. <i>Journal of Materials Chemistry</i> 4, 2019, 7, 11095-11103 170 Cow-temperature transport properties of polycrystalline Ba8Ga16Sn30. <i>Journal of Materials Research</i> , 2004, 19, 3556-3559 170 Epitaxial strain, metastable structure, and magnetic anisotropy in Co-based superlattices (invited). <i>Journal of Applied Physics</i> , 1991, 70, 5775-5779 171 Thermal transport properties of SbCIS-graphite and of HOPG in the c-direction. <i>Synthetic Metals</i> , 1985, 12, 91-96 172 Thermal transport properties of n-type ZrNiSn prepared by rapid non-equilibrium laser processing. <i>RSC Advances</i> , 2018, 8, 15796-15803 173 Lattice thermal conductivity of K2(Bi1BSb2)8Se13 solid solutions. <i>Journal of Applied Physics</i> , 2004, 25, 4140-4146 173 Thermal conductivity of Ba-K-Bi-O: A contrast to copper oxide superconductors. <i>Physical Review B</i> , 1990, 42, 2684-2687 174 Thermal conductivity of Ba-K-Bi-O: A contrast to copper oxide superconductors. <i>Physical Review B</i> , 1990, 42, 2684-2687			
Concerted Rattling in CsAg5Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance. Angewandte Chemie, 2016, 128, 11603-11608 Chemical synthesis and enhanced electrical properties of bulk poly(3,4-ethylenedioxythiophene)/reduced graphene oxide nanocomposites. Synthetic Metals, 2017, 229, 65-71 Ultralow thermal conductivity of BaAg2SnSe4 and the effect of doping by Ga and In. Materials Today Physics, 2019, 9, 100098 Coherent magnetic nanoinclusions induce charge localization in half-Heusler alloys leading to high-Tc ferromagnetism and enhanced thermoelectric performance. Journal of Materials Chemistry A, 2019, 7, 11095-11103 Low-temperature transport properties of polycrystalline Ba8Ga16Sn30. Journal of Materials Research, 2004, 19, 3556-3559 Low-temperature transport properties of polycrystalline Ba8Ga16Sn30. Journal of Materials Research, 2004, 19, 3556-3559 Thermal transport properties of SbCl5-graphite and of HOPG in the c-direction. Synthetic Metals, 1985, 12, 91-96 Electron Density Optimization and the Anisotropic Thermoelectric Properties of Ti Self-Intercalated 715 Compounds. ACS Applied Materials & Amp; Interfaces, 2018, 10, 32344-32354 Thermoelectric properties of n-type ZrNiSn prepared by rapid non-equilibrium laser processing RSC Advances, 2018, 8, 15796-15803 Thermoelectric properties of n-type ZrNiSn prepared by rapid non-equilibrium laser processing RSC Advances, 2018, 8, 15796-15803 Lattice thermal conductivity of K2(Bi1BSbz)8Se13 solid solutions. Journal of Applied Physics, 2004, 95, 4140-4146 Electrical resistance and the time-dependent oxidation of semicontinuous bismuth films. Journal of Applied Physics, 1989, 66, 2045-2048 Thermal conductivity of Ba-K-Bi-O: A contrast to copper oxide superconductors. Physical Review B, 1990, 42, 2684-2687 Electronic transport in tungsten and iron-doped tungsten below 1 K. Journal of Low Temperature	15	1.3	172
Chemical synthesis and enhanced electrical properties of bulk poly(3,4-ethylenedioxythiophene)/reduced graphene oxide nanocomposites. Synthetic Metals, 2017, 229, 65-71 168 Ultralow thermal conductivity of BaAg2SnSe4 and the effect of doping by Ga and In. Materials 70day Physics, 2019, 9, 100098 167 Coherent magnetic nanoinclusions induce charge localization in half-Heusler alloys leading to high-Tc ferromagnetism and enhanced thermoelectric performance. Journal of Materials Chemistry A, 2019, 7, 11095-11103 166 Low-temperature transport properties of polycrystalline Ba8Ga16Sn30. Journal of Materials Research, 2004, 19, 3556-3559 165 Epitaxial strain, metastable structure, and magnetic anisotropy in Co-based superlattices (invited). Journal of Applied Physics, 1991, 70, 5775-5779 164 1985, 12, 91-96 165 Electron Density Optimization and the Anisotropic Thermoelectric Properties of Ti Self-Intercalated 17 is Compounds. ACS Applied Materials & Density Interfaces, 2018, 10, 32344-32354 166 Research, 2004, 18, 15796-15803 167 Thermoelectric properties of n-type ZrNiSn prepared by rapid non-equilibrium laser processing. RSC Advances, 2018, 8, 15796-15803 168 Lattice thermal conductivity of K2(Bi1ESbz)8Se13 solid solutions. Journal of Applied Physics, 2004, 95, 4140-4146 169 Electrical resistance and the time-dependent oxidation of semicontinuous bismuth films. Journal of Applied Physics, 1989, 66, 2045-2048 169 Thermal conductivity of Ba-K-Bi-O: A contrast to copper oxide superconductors. Physical Review B, 1990, 42, 2684-2687 160 Electronic transport in tungsten and iron-doped tungsten below 1 K. Journal of Low Temperature	15	16.4	171
poly(3,4-ethylenedioxythiophene)/reduced graphene oxide nanocomposites. Synthetic Metals, 2017, 229, 65-71 Idltralow thermal conductivity of BaAg2SnSe4 and the effect of doping by Ga and In. Materials Today Physics, 2019, 9, 100098 Coherent magnetic nanoinclusions induce charge localization in half-Heusler alloys leading to high-Tc ferromagnetism and enhanced thermoelectric performance. Journal of Materials Chemistry A, 2019, 7, 11095-11103 Low-temperature transport properties of polycrystalline Ba8Ga16Sn30. Journal of Materials Research, 2004, 19, 3556-3559 Epitaxial strain, metastable structure, and magnetic anisotropy in Co-based superlattices (invited). Journal of Applied Physics, 1991, 70, 5775-5779 Thermal transport properties of SbCI5-graphite and of HOPG in the c-direction. Synthetic Metals, 1985, 12, 91-96 Electron Density Optimization and the Anisotropic Thermoelectric Properties of Ti Self-Intercalated TiS Compounds. ACS Applied Materials Ramp; Interfaces, 2018, 10, 32344-32354 Thermoelectric properties of n-type ZrNiSn prepared by rapid non-equilibrium laser processing. RSC Advances, 2018, 8, 15796-15803 161 Electrical resistance and the time-dependent oxidation of semicontinuous bismuth films. Journal of Applied Physics, 1989, 66, 2045-2048 Thermal conductivity of Ba-K-Bi-O: A contrast to copper oxide superconductors. Physical Review B, 1990, 42, 2684-2687 Electronic transport in tungsten and iron-doped tungsten below 1 K. Journal of Low Temperature	15	3.6	170
Coherent magnetic nanoinclusions induce charge localization in half-Heusler alloys leading to high-Tc ferromagnetism and enhanced thermoelectric performance. Journal of Materials Chemistry A, 2019, 7, 11095-11103 166 Low-temperature transport properties of polycrystalline Ba8Ga16Sn30. Journal of Materials Research, 2004, 19, 3556-3559 Epitaxial strain, metastable structure, and magnetic anisotropy in Co-based superlattices (invited). Journal of Applied Physics, 1991, 70, 5775-5779 164 Thermal transport properties of SbCl5-graphite and of HOPG in the c-direction. Synthetic Metals, 1985, 12, 91-96 Electron Density Optimization and the Anisotropic Thermoelectric Properties of Ti Self-Intercalated TiS Compounds. ACS Applied Materials & Description of Self-Intercalated TiS Compounds. ACS Applied Materials & Description of Self-Intercalated Physics, 2018, 8, 15796-15803 162 Thermoelectric properties of n-type ZrNiSn prepared by rapid non-equilibrium laser processing. RSC Advances, 2018, 8, 15796-15803 161 Lattice thermal conductivity of K2(Bi1BSb2)8Se13 solid solutions. Journal of Applied Physics, 2004, 95, 4140-4146 160 Electrical resistance and the time-dependent oxidation of semicontinuous bismuth films. Journal of Applied Physics, 1989, 66, 2045-2048 175 Thermal conductivity of Ba-K-Bi-O: A contrast to copper oxide superconductors. Physical Review B, 1990, 42, 2684-2687 Electronic transport in tungsten and iron-doped tungsten below 1 K. Journal of Low Temperature	14	3.6	169
high-Tc ferromagnetism and enhanced thermoelectric performance. Journal of Materials Chemistry A, 2019, 7, 11095-11103 Low-temperature transport properties of polycrystalline Ba8Ga16Sn30. Journal of Materials Research, 2004, 19, 3556-3559 Epitaxial strain, metastable structure, and magnetic anisotropy in Co-based superlattices (invited). Journal of Applied Physics, 1991, 70, 5775-5779 Thermal transport properties of SbCl5-graphite and of HOPG in the c-direction. Synthetic Metals, 1985, 12, 91-96 Electron Density Optimization and the Anisotropic Thermoelectric Properties of Ti Self-Intercalated TiS Compounds. ACS Applied Materials & amp; Interfaces, 2018, 10, 32344-32354 Thermoelectric properties of n-type ZrNiSn prepared by rapid non-equilibrium laser processing RSC Advances, 2018, 8, 15796-15803 37 Lattice thermal conductivity of K2(Bi1BSbz)8Se13 solid solutions. Journal of Applied Physics, 2004, 95, 4140-4146 Electrical resistance and the time-dependent oxidation of semicontinuous bismuth films. Journal of Applied Physics, 1989, 66, 2045-2048 Thermal conductivity of Ba-K-Bi-O: A contrast to copper oxide superconductors. Physical Review B, 1990, 42, 2684-2687 Electronic transport in tungsten and iron-doped tungsten below 1 K. Journal of Low Temperature	14	8	168
Epitaxial strain, metastable structure, and magnetic anisotropy in Co-based superlattices (invited). Journal of Applied Physics, 1991, 70, 5775-5779 2.5 Thermal transport properties of SbCl5-graphite and of HOPG in the c-direction. Synthetic Metals, 1985, 12, 91-96 Electron Density Optimization and the Anisotropic Thermoelectric Properties of Ti Self-Intercalated TiS Compounds. ACS Applied Materials & amp; Interfaces, 2018, 10, 32344-32354 Thermoelectric properties of n-type ZrNiSn prepared by rapid non-equilibrium laser processing RSC Advances, 2018, 8, 15796-15803 3.7 Lattice thermal conductivity of K2(Bi1\overline{B}\verline{B}\verline{Sbz}\verline{B}\verline{B}\verline{Sbz}\verline{B}\verline{B}\verline{Sbz}\verline{B}\ve	14	13	167
Thermal transport properties of SbCl5-graphite and of HOPG in the c-direction. Synthetic Metals, 1985, 12, 91-96 Electron Density Optimization and the Anisotropic Thermoelectric Properties of Ti Self-Intercalated TiS Compounds. ACS Applied Materials & amp; Interfaces, 2018, 10, 32344-32354 Thermoelectric properties of n-type ZrNiSn prepared by rapid non-equilibrium laser processing RSC Advances, 2018, 8, 15796-15803 Lattice thermal conductivity of K2(Bi1\delta\substacking Sbz)8Se13 solid solutions. Journal of Applied Physics, 2004, 95, 4140-4146 Electrical resistance and the time-dependent oxidation of semicontinuous bismuth films. Journal of Applied Physics, 1989, 66, 2045-2048 Thermal conductivity of Ba-K-Bi-O: A contrast to copper oxide superconductors. Physical Review B, 1990, 42, 2684-2687 Electronic transport in tungsten and iron-doped tungsten below 1 K. Journal of Low Temperature	14	2.5	166
163 Electron Density Optimization and the Anisotropic Thermoelectric Properties of Ti Self-Intercalated TiS Compounds. ACS Applied Materials & Description of TiSelf-Intercalated TiS Compounds. ACS Applied Materials & Description of TiSelf-Intercalated TiS Compounds. ACS Applied Materials & Description of TiSelf-Intercalated TiS Compounds. ACS Applied Materials & Description of TiSelf-Intercalated TiSelf	14	2.5	165
Tis Compounds. ACS Applied Materials & Damp; Interfaces, 2018, 10, 32344-32354 Thermoelectric properties of n-type ZrNiSn prepared by rapid non-equilibrium laser processing RSC Advances, 2018, 8, 15796-15803 Lattice thermal conductivity of K2(Bi1\overline{B}Sbz)8Se13 solid solutions. Journal of Applied Physics, 2004, 95, 4140-4146 Electrical resistance and the time-dependent oxidation of semicontinuous bismuth films. Journal of Applied Physics, 1989, 66, 2045-2048 Thermal conductivity of Ba-K-Bi-O: A contrast to copper oxide superconductors. Physical Review B, 1990, 42, 2684-2687 Electronic transport in tungsten and iron-doped tungsten below 1 K. Journal of Low Temperature	14	3.6	164
Lattice thermal conductivity of K2(Bi1\overline{\text{BSbz}})8Se13 solid solutions. Journal of Applied Physics, 2004, 95, 4140-4146 Electrical resistance and the time-dependent oxidation of semicontinuous bismuth films. Journal of Applied Physics, 1989, 66, 2045-2048 Thermal conductivity of Ba-K-Bi-O: A contrast to copper oxide superconductors. Physical Review B, 1990, 42, 2684-2687 Electronic transport in tungsten and iron-doped tungsten below 1 K. Journal of Low Temperature	14	9.5	163
95, 4140-4146 Electrical resistance and the time-dependent oxidation of semicontinuous bismuth films. <i>Journal of Applied Physics</i> , 1989 , 66, 2045-2048 Thermal conductivity of Ba-K-Bi-O: A contrast to copper oxide superconductors. <i>Physical Review B</i> , 1990 , 42, 2684-2687 Electronic transport in tungsten and iron-doped tungsten below 1 K. <i>Journal of Low Temperature</i>	14	3.7	162
Thermal conductivity of Ba-K-Bi-O: A contrast to copper oxide superconductors. <i>Physical Review B</i> , 1990, 42, 2684-2687 Electronic transport in tungsten and iron-doped tungsten below 1 K. <i>Journal of Low Temperature</i>	13	2.5	161
1990, 42, 2684-2687 Electronic transport in tungsten and iron-doped tungsten below 1 K. <i>Journal of Low Temperature</i>	13	2.5	160
	13	3.3	159
	13	1.3	158
Electron transport properties of palladium-ruthenium alloys from 50 mK to 4.2 K. <i>Journal of Low Temperature Physics</i> , 1977 , 29, 487-498	13	1.3	157
Fracture structure and thermoelectric enhancement of CuSe with substitution of nanostructured AgSe. Physical Chemistry Chemical Physics, 2019 , 21, 13569-13577	12	3.6	156

155	Optimizing the average power factor of p-type (Na, Ag) co-doped polycrystalline SnSe <i>RSC Advances</i> , 2019 , 9, 7115-7122	3.7	12
154	Discovery of a magnetic conductive interface in PbZrTiO /SrTiO heterostructures. <i>Nature Communications</i> , 2018 , 9, 685	17.4	12
153	Preparation and properties of ultra-low density proppants for use in hydraulic fracturing. <i>Journal of Petroleum Science and Engineering</i> , 2018 , 163, 100-109	4.4	12
152	In situ nanostructure design leading to a high figure of merit in an eco-friendly stable Mg2Si0.30Sn0.70 solid solution. <i>RSC Advances</i> , 2016 , 6, 16824-16831	3.7	12
151	Understanding the Intrinsic Carrier Transport in Highly Oriented Poly(3-hexylthiophene): Effect of Side Chain Regioregularity. <i>Polymers</i> , 2018 , 10,	4.5	12
150	Femtosecond laser-induced nanostructure formation in Sb2Te3. <i>Applied Physics Letters</i> , 2011 , 99, 12190	03.4	12
149	Crystal Growth of Ternary and Quaternary Alkali Metal Bismuth Chalcogenides Using Bridgman Technique. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 626, 881		12
148	The anomalous thermal conductivity of La2-xSrxCuO4-yat very low temperatures. <i>Journal of Physics C: Solid State Physics</i> , 1988 , 21, L957-L963		12
147	Thermal conductivity of arsenic single crystals from 2 to 300 K. <i>Physical Review B</i> , 1983 , 28, 4242-4246	3.3	12
146	Size dependence of the transport properties of trigonal bismuth. <i>Physical Review B</i> , 1981 , 23, 449-452	3.3	12
145	Thermal conductivity of bismuth at ultralow temperatures. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1978 , 68, 74-76	2.3	12
144	Transport properties of palladium from 40 mK to 6K. <i>Journal of Physics F: Metal Physics</i> , 1978 , 8, 865-87	1	12
143	A comparison of thermomagnetic materials for use at room temperature. <i>Journal Physics D: Applied Physics</i> , 1972 , 5, 1478-1488	3	12
142	Extraordinary role of Zn in enhancing thermoelectric performance of Ga-doped n-type PbTe. <i>Energy and Environmental Science</i> , 2022 , 15, 368-375	35.4	12
141	Identifying the Manipulation of Individual Atomic-Scale Defects for Boosting Thermoelectric Performances in Artificially Controlled BiTe Films. <i>ACS Nano</i> , 2021 , 15, 5706-5714	16.7	12
140	Fine-tuning the solid-state ordering and thermoelectric performance of regioregular P3HT analogues by sequential oxygen-substitution of carbon atoms along the alkyl side chains. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 2333-2344	7.1	11
139	Band Ordering and Dynamics of Cu2½Te and Cu1.98Ag0.2Te. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 14549-14555	3.8	11
138	Heat conduction of (111) Co/Cu superlattices. <i>Journal of Applied Physics</i> , 1997 , 81, 4586-4588	2.5	11

137	Electrical conductivity and thermopower of CuBiO2 nanogranular films. <i>Applied Physics Letters</i> , 2002 , 81, 523-525	3.4	11
136	Terahertz transmission of a Ba1-xKxBiO3 film probed by coherent time-domain spectroscopy. <i>Physical Review B</i> , 1995 , 52, 3607-3613	3.3	11
135	Experimental evidence for multi-band conduction in highly-doped La-Sr-Cu-O superconductors. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1987 , 125, 421-424	2.3	11
134	Ultra-low temperature transport anomalies in air annealed Pt. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1977 , 61, 344-346	2.3	11
133	Thickness-dependent electronic transport induced by in situ transformation of point defects in MBE-grown Bi2Te3 thin films. <i>Applied Physics Letters</i> , 2020 , 117, 153902	3.4	11
132	A low-temperature study of manganese-induced ferromagnetism and valence band convergence in tin telluride. <i>Applied Physics Letters</i> , 2016 , 108, 182101	3.4	11
131	Strong Valence Band Convergence to Enhance Thermoelectric Performance in PbSe with Two Chemically Independent Controls. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 268-273	16.4	11
130	Dissociation of GaSb in n-Type PbTe: off-Centered Gallium Atom and Weak Electron Phonon Coupling Provide High Thermoelectric Performance. <i>Chemistry of Materials</i> , 2021 , 33, 1842-1851	9.6	11
129	Zhao et al. reply. <i>Nature</i> , 2016 , 539, E2-E3	50.4	10
128	Insights on the Synthesis, Crystal and Electronic Structures, and Optical and Thermoelectric Properties of SrSb HfSe Orthorhombic Perovskite. <i>Inorganic Chemistry</i> , 2018 , 57, 7402-7411	5.1	10
127	Kapitza conductance of Bi/sapphire interface studied by depth- and time-resolved X-ray diffraction. <i>Solid State Communications</i> , 2011 , 151, 826-829	1.6	10
126	Searching for New Thermoelectrics in Chemically and Structurally Complex Bismuth Chalcogenides. <i>Materials Research Society Symposia Proceedings</i> , 1997 , 478, 333		10
125	Defect structure of Sb2\(\mathbb{Z}\)CrxTe3 single crystals. <i>Journal of Applied Physics</i> , 2008 , 103, 013516	2.5	10
124	Solid solubility of Ir and Rh at the Co sites of skutterudites. <i>Journal of Applied Physics</i> , 2007 , 101, 12352	. 5 2.5	10
123	Glasslike thermal transport in heavily irradiated diamond. <i>Physical Review B</i> , 1993 , 48, 3037-3041	3.3	10
122	Synergistically Improved Electronic and Thermal Transport Properties in Nb-Doped NbMoSeTe Solid Solutions Due to Alloy Phonon Scattering and Increased Valley Degeneracy. <i>ACS Applied Materials & Degeneracy</i> , 2019, 11, 26069-26081	9.5	9
121	Structure and thermoelectric properties of 2D Cr2Se3BxS3x solid solutions. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 836-846	7.1	9
120	Modification of the intermediate band and thermoelectric properties in Se-doped CoSbS1⊠Sex compounds. <i>RSC Advances</i> , 2017 , 7, 34466-34472	3.7	9

(2021-2015)

119	Epitaxial growth and improved electronic properties of (Bi1Bb)2Te3 thin films grown on sapphire (0001) substrates: The influence of Sb content and the annealing. <i>Journal of Alloys and Compounds</i> , 2015 , 647, 50-56	5.7	9
118	Carrier-mediated ferromagnetism in vanadium-doped (Sb1\(\mathbb{B}\)Bix)2Te3 solid solutions. <i>Applied Physics Letters</i> , 2006 , 88, 192502	3.4	9
117	Thermal conductivity of single crystal lanthanum cuprates at very low temperature. <i>Solid State Communications</i> , 1991 , 77, 773-776	1.6	9
116	Characteristics of Y-Ba-Cu-O superconductor films on GaAs with an Al2O3 or AlGaO3 buffer layer. <i>Applied Physics Letters</i> , 1991 , 58, 2704-2706	3.4	9
115	The Nernst effect in Cd3As2-NiAs. <i>Journal Physics D: Applied Physics</i> , 1972 , 5, 1352-1357	3	9
114	Optimization of Ag Nanoparticles on Thermoelectric Performance of Ba-Filled Skutterudite. <i>Science of Advanced Materials</i> , 2017 , 9, 682-687	2.3	9
113	High-Tc Superconductors: Evidence on the Electron?Phonon Interaction from Transport Measurements. <i>Australian Journal of Physics</i> , 1988 , 41, 597		9
112	An Instant Change of Elastic Lattice Strain during Cu2Se Phase Transition: Origin of Abnormal Thermoelectric Properties. <i>Advanced Functional Materials</i> , 2021 , 31, 2100431	15.6	9
111	NMR study of vacancy and structure-induced changes in Cu2-xTe. <i>Journal of Physics and Chemistry of Solids</i> , 2017 , 106, 52-57	3.9	8
110	Ultralow thermal conductivity in graphenelilica porous ceramics with a special saucer structure of graphene aerogels. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 1574-1584	13	8
109	Chemical manipulation of phase stability and electronic behavior in Cu4AgxSe2. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 6997-7004	13	8
108	Thermoelectric Properties of Ga/Ag Codoped Type-III Ba t elClathrates with in Situ Nanostructures. <i>ACS Applied Materials & Samp; Interfaces</i> , 2015 , 7, 19172-8	9.5	8
107	Structure and Thermoelectric Properties of Te- and Ge-Doped Skutterudites CoSb2.875 Ge0.125Te x. <i>Journal of Electronic Materials</i> , 2011 , 40, 1286-1291	1.9	8
106	Transport Properties of Partially-Filled CeyCo4Sb12. <i>Materials Research Society Symposia</i> Proceedings, 1997 , 478, 315		8
105	Temperature dependence of the magnetization reversal in Co(fcc)BNIIo(poly hcp) structures. Journal of Applied Physics, 1999 , 85, 5765-5767	2.5	8
104	Electronic transport in Mo/Ni superlattices. Superlattices and Microstructures, 1985, 1, 125-129	2.8	8
103	Thermopower and thermal conductivity of arsenic from 8K down to 0.3K. <i>Journal of Physics F: Metal Physics</i> , 1978 , 8, 2559-2567		8
102	All-Optical Probe of Three-Dimensional Topological Insulators Based on High-Harmonic Generation by Circularly Polarized Laser Fields. <i>Nano Letters</i> , 2021 , 21, 8970-8978	11.5	8

101	Ultra-Fast One-Step Fabrication of Cu2Se Thermoelectric Legs With NiAl Electrodes by Plasma-Activated Reactive Sintering Technique . <i>Advanced Engineering Materials</i> , 2016 , 18, 1181-1188	3.5	8
100	Indium Preferential Distribution Enables Electronic Engineering of Magnetism in FeSb2\(\mathbb{\text{InxSe4}}\) p-Type High-Tc Ferromagnetic Semiconductors. <i>Chemistry of Materials</i> , 2016 , 28, 8570-8579	9.6	8
99	Origins of enhanced thermoelectric power factor in topologically insulating Bi0.64Sb1.36Te3 thin films. <i>Applied Physics Letters</i> , 2016 , 108, 043902	3.4	8
98	Rapid fabrication and thermoelectric performance of SnTe via non-equilibrium laser 3D printing. <i>Rare Metals</i> , 2018 , 37, 300-307	5.5	7
97	Surface phonons in the topological insulators Bi2Se3 and Bi2Te3. <i>Solid State Communications</i> , 2018 , 271, 1-5	1.6	7
96	Transport properties of ZnTe:N thin films. <i>Applied Physics Letters</i> , 2013 , 103, 042108	3.4	7
95	Ferromagnetic interlayer exchange coupling in semiconductor SbCrTeBb2Te3BbCrTe trilayer structures. <i>Applied Physics Letters</i> , 2006 , 89, 232501	3.4	7
94	Impurity states in Mo1MxSe2 compounds doped with group VB elements and their electronic and thermal transport properties. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 619-629	7.1	7
93	Mictomagnetic full-Heusler nanoprecipitates in (Ti, Zr, Hf)NiFexSn half-Heusler composites. <i>Materials Today Physics</i> , 2019 , 11, 100155	8	7
92	Thermoelectric properties of small diameter carbon nanowires. <i>Carbon</i> , 2013 , 53, 286-291	10.4	6
91	Transport and magnetic properties of the diluted magnetic semiconductors Sb1.98\(\mathbb{Q}\) V0.02Crx Te3 and Sb1.984\(\mathbb{Q}\) V0.016Mny Te3. <i>Physica Status Solidi (B): Basic Research</i> , 2007 , 244, 2202-2209	1.3	6
90	Thermoelectric Properties of RhSb3 Crystals and Thin Films. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 452, 1037		6
89	Influence of neutron irradiation on the thermal conductivity of vapor-deposited diamond. <i>Journal of Applied Physics</i> , 1994 , 76, 1515-1517	2.5	6
88	Electrical resistivity of single crystal arsenic at very low temperatures. <i>Journal of Physics F: Metal Physics</i> , 1986 , 16, L103-L107		6
87	Tin-doped bismuth: An inhomogeneous superconductor. <i>Physical Review B</i> , 1985 , 32, 88-97	3.3	6
86	Ultrafine Interwoven Dendritic Cu2Se/CuFeSe2 Composites with Enhanced Thermoelectric Performance. <i>ACS Applied Energy Materials</i> , 2020 , 3, 9133-9142	6.1	6
85	Lone-Electron-Pair Micelles Strengthen Bond Anharmonicity in MnPbSbS Complex Sulfosalt Leading to Ultralow Thermal Conductivity. <i>ACS Applied Materials & Description</i> (2018), 12, 44991-4499.	9 9 ·5	6
84	Strong Valence Band Convergence to Enhance Thermoelectric Performance in PbSe with Two Chemically Independent Controls. <i>Angewandte Chemie</i> , 2021 , 133, 272-277	3.6	6

(2006-2016)

83	Thermoelectric properties of p-type Ag1(Pb1Bn) Sb1IIe+2. <i>Journal of Solid State Chemistry</i> , 2016 , 242, 34-42	3.3	5
82	Distribution of impurity states and charge transport in Zr0.25Hf0.75Ni1+xSn1JSby nanocomposites. <i>Journal of Solid State Chemistry</i> , 2016 , 234, 72-86	3.3	5
81	Correlation between processing conditions, microstructure and charge transport in half-Heusler alloys. <i>Journal of Solid State Chemistry</i> , 2013 , 201, 280-287	3.3	5
80	High-Tc Ferromagnetism and Electron Transport in p-Type Fe(1-x)Sn(x)Sb2Se4 Semiconductors. <i>Inorganic Chemistry</i> , 2015 , 54, 10371-9	5.1	5
79	Thermoelectric Properties of Non-equilibrium Synthesized Ce0.9Fe3CoSb12 Filled Skutterudites. <i>Materials Research Society Symposia Proceedings</i> , 2010 , 1267, 1		5
78	Evolution of structural and thermoelectric properties of indium-ion-implanted epitaxial GaAs. <i>Applied Physics Letters</i> , 2012 , 100, 102101	3.4	5
77	Transport Behavior and Thermal Conductivity Reduction in the Composite System PbTe-Pb-Sb. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1044, 1		5
76	Pulsed terahertz-beam spectroscopy as a probe of the thermal and quantum response of YBa2Cu3O7Ibuperfluid. <i>Applied Physics Letters</i> , 1995 , 67, 3022-3024	3.4	5
75	Pressure enhancement of the electrical conductivity of graphite intercalation compounds. <i>Journal of Physics C: Solid State Physics</i> , 1981 , 14, L911-L913		5
74	Thermopower measurements on arsenic from 2 to 300 K. <i>Physical Review B</i> , 1982 , 26, 6349-6354	3.3	5
7473	Thermopower measurements on arsenic from 2 to 300 K. <i>Physical Review B</i> , 1982 , 26, 6349-6354 Thermomagnetic effects in tin-doped bismuth. <i>Physica Status Solidi (B): Basic Research</i> , 1975 , 68, 709-7		5
73	Thermomagnetic effects in tin-doped bismuth. <i>Physica Status Solidi (B): Basic Research</i> , 1975 , 68, 709-7. A resistivity minimum in tungsten and its correlation with thermoelectric anomalies. <i>Journal of</i>		5
73 72	Thermomagnetic effects in tin-doped bismuth. <i>Physica Status Solidi (B): Basic Research</i> , 1975 , 68, 709-77. A resistivity minimum in tungsten and its correlation with thermoelectric anomalies. <i>Journal of Physics F: Metal Physics</i> , 1977 , 7, 1691-1698 Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of	1ዥ.3	5
73 72 71	Thermomagnetic effects in tin-doped bismuth. <i>Physica Status Solidi (B): Basic Research</i> , 1975 , 68, 709-77. A resistivity minimum in tungsten and its correlation with thermoelectric anomalies. <i>Journal of Physics F: Metal Physics</i> , 1977 , 7, 1691-1698 Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe. <i>Advanced Materials</i> , 2021 , 33, e2104908 Suppressed Magnetic Circular Dichroism and Valley-Selective Magnetoabsorption due to the	17a.3	555
73 72 71 70	Thermomagnetic effects in tin-doped bismuth. <i>Physica Status Solidi (B): Basic Research</i> , 1975 , 68, 709-77. A resistivity minimum in tungsten and its correlation with thermoelectric anomalies. <i>Journal of Physics F: Metal Physics</i> , 1977 , 7, 1691-1698 Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe. <i>Advanced Materials</i> , 2021 , 33, e2104908 Suppressed Magnetic Circular Dichroism and Valley-Selective Magnetoabsorption due to the Effective Mass Anisotropy in Bismuth. <i>Physical Review Letters</i> , 2016 , 117, 017402 Thermoelectric properties of Cu/Ag doped type-III Ba24Ge100 clathrates. <i>Journal of Solid State</i>	17i.3	5554
73 72 71 70 69	Thermomagnetic effects in tin-doped bismuth. <i>Physica Status Solidi (B): Basic Research</i> , 1975 , 68, 709-77. A resistivity minimum in tungsten and its correlation with thermoelectric anomalies. <i>Journal of Physics F: Metal Physics</i> , 1977 , 7, 1691-1698 Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe. <i>Advanced Materials</i> , 2021 , 33, e2104908 Suppressed Magnetic Circular Dichroism and Valley-Selective Magnetoabsorption due to the Effective Mass Anisotropy in Bismuth. <i>Physical Review Letters</i> , 2016 , 117, 017402 Thermoelectric properties of Cu/Ag doped type-III Ba24Ge100 clathrates. <i>Journal of Solid State Chemistry</i> , 2017 , 253, 414-420 Phase-diagram-related problems in thermoelectric materials: Skutterudites as an example.	17.3 24 7.4 3.3	5554

65	Thermoelectric Properties of the Cubic Family of Compounds AgPbBiQ3 (Q = S, Se, Te). Very Low Thermal Conductivity Materials. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 545, 123		4
64	High carrier mobility and ultralow thermal conductivity in the synthetic layered superlattice Sn4Bi10Se19. <i>Materials Advances</i> , 2021 , 2, 2382-2390	3.3	4
63	Thermoelectric Materials: Multi-Scale Microstructural Thermoelectric Materials: Transport Behavior, Non-Equilibrium Preparation, and Applications (Adv. Mater. 20/2017). <i>Advanced Materials</i> , 2017 , 29,	24	3
62	Nanoscale Engineering of Polymorphism in CuSe-Based Composites. <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2020 , 12, 31601-31611	9.5	3
61	Coordination Assembly of Discoid Nanoparticles. <i>Angewandte Chemie</i> , 2015 , 127, 9094-9098	3.6	3
60	High-quality II-VI films grown on amorphous substrates using tunable tetradymite templates. <i>Applied Physics Letters</i> , 2014 , 105, 221606	3.4	3
59	Time- and momentum-resolved probe of heat transport in photo-excited bismuth. <i>Applied Physics Letters</i> , 2013 , 102, 181903	3.4	3
58	High-performance micro scale thermoelectric cooler: An optimized 6-stage cooler 2009,		3
57	Figure of Merit of (Sb0.75Bi0.25)2⊠ In x Te2.8Se0.2 Single Crystals. <i>Journal of Electronic Materials</i> , 2010 , 39, 1760-1763	1.9	3
56	Transport properties of ZrNiSn-based intermetallics		3
55	Cerium filling and lattice thermal conductivity of skutterudites		3
54	Phase Segregation and Thermoelectric Properties of AgPbmSbTem+2 m=2, 4, 6, and 8. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 886, 1		3
53	Epitaxial growth of (001) and (111) Ni films on MgO substrates. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 648, 1		3
52	A scanning tunneling microscopy study of epitaxial Ge growth. <i>Journal of Crystal Growth</i> , 1995 , 150, 96	50 -<u>9</u>6 3	3
51	High-Field Giant Magnetoresistance in Co-Cu Superlattices. <i>Materials Research Society Symposia Proceedings</i> , 1993 , 313, 35		3
50		2.3	3
	Proceedings, 1993, 313, 35 Low-temperature electronic transport and the Coulomb blockade in oxidized films of bismuth.	2.3	

(2015-1985)

47	Thermal conductivity of tin-doped bismuth between 50 mK and 7K. <i>Journal of Physics C: Solid State Physics</i> , 1985 , 18, 3001-3010		3
46	Low-Field Thermomagnetic Tensor for the Bi-Like Band Structure. <i>Physica Status Solidi (B): Basic Research</i> , 1975 , 70, 219-225	1.3	3
45	Achieving superior performance in thermoelectric Bi0.4Sb1.6Te3.72 by enhancing texture and inducing high-density line defects. <i>Science China Materials</i> , 2021 , 64, 1507-1520	7.1	3
44	Atomic mechanism of ionic confinement in the thermoelectric Cu2Se based on a low-cost electric-current method. <i>Cell Reports Physical Science</i> , 2021 , 2, 100345	6.1	3
43	The origin of ultra-low thermal conductivity of the Bi2Te2S compound and boosting the thermoelectric performance via carrier engineering. <i>Materials Today Physics</i> , 2021 , 20, 100472	8	3
42	Charge Disproportionation Triggers Bipolar Doping in FeSbSn Se Ferromagnetic Semiconductors, Enabling a Temperature-Induced Lifshitz Transition. <i>Journal of the American Chemical Society</i> , 2019 , 141, 9249-9261	16.4	2
41	Engineering Magnetic Transitions in Fe1\(\mathbb{B}\)SnxBi2Se4 n-Type Ferromagnetic Semiconductors through Chemical Manipulation of Spatial Separation between Magnetic Centers. <i>Chemistry of Materials</i> , 2019 , 31, 3507-3518	9.6	2
40	Charge-carrier behavior in Ba-, Sr- and Yb-filled CoSb3: NMR and transport studies. <i>Physical Review B</i> , 2019 , 99,	3.3	2
39	Unconventional large linear magnetoresistance in Cu2\(\mathbb{U}\)Te. AIP Advances, 2018, 8, 055135	1.5	2
38	Investigation of the valence band structure of PbSe by optical and transport measurement. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1490, 75-81		2
37	Investigation of the thermoelectric properties of the PbTe-SrTe system. <i>Materials Research Society Symposia Proceedings</i> , 2010 , 1267, 1		2
36	Synthesis, Crystal Structure And Thermoelectric Properties of		2
35	Skutterudites: promising power conversion thermoelectrics		2
34	Nanostructuring and its Influence on the Thermoelectric Properties of the AgSbTe2-SnTe Quaternary System. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 886, 1		2
33	Phonon-Drag Generated Umkehreffect in Bismuth. <i>Physica Status Solidi (B): Basic Research</i> , 1976 , 75, K137-K141	1.3	2
32	Measurement of heat flow by means of the Nernst effect. <i>Journal of Physics E: Scientific Instruments</i> , 1972 , 5, 313-314		2
31	Chapter 3 Growth and Transport Properties of Tetradymite Thin Films 2016 , 95-124		2
30	Structure and Transport Properties of Bi2Te3 Films 2015, 73-98		1

29	High thermoelectric efficiency in co-doped degenerate p-type PbTe. <i>Materials Research Society Symposia Proceedings</i> , 2010 , 1267, 1		1
28	Complex bismuth chalcogenides as thermoelectrics		1
27	Thermoelectric Properties of the cubic AgPb10SbTe12. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 793, 220		1
26	The Influence of Ni on the Transport Properties of CoSb3. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 626, 1031		1
25	Thermoelectric Properties of K2Bi8\SbxSe13 Solid Solutions and Se Doping. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 691, 1		1
24	High temperature thermoelectric properties of MNiSn (M=Zr, Hf)		1
23	. IEEE Transactions on Applied Superconductivity, 1995 , 5, 1970-1974	1.8	1
22	Magnetothermal conductivity of Ba1-xKxBiO3 crystals. <i>Physical Review B</i> , 1995 , 51, 6171-6174	3.3	1
21	Morphological Transition of Epitaxial Rhodium (111). <i>Materials Research Society Symposia Proceedings</i> , 1995 , 399, 243		1
20	Quasilinear dispersion in electronic band structure and high Seebeck coefficient in CuFeS2-based thermoelectric materials. <i>Physical Review Materials</i> , 2020 , 4,	3.2	1
19	CuAlSe Inclusions Trigger Dynamic Cu Ion Depletion from the CuSe Matrix Enabling High Thermoelectric Performance. <i>ACS Applied Materials & Description of the CuSe Matrix Enabling High Thermoelectric Performance. ACS Applied Materials & Description of the CuSe Matrix Enabling High Thermoelectric Performance. ACS Applied Materials & Description of the CuSe Matrix Enabling High Thermoelectric Performance and Description of the CuSe Matrix Enabling High Thermoelectric Performance and Description of the CuSe Matrix Enabling High Thermoelectric Performance and Description of the CuSe Matrix Enabling High Thermoelectric Performance and Description of the CuSe Matrix Enabling High Thermoelectric Performance and Description of the CuSe Matrix Enabling High Thermoelectric Performance and Description of the CuSe Matrix Enabling High Thermoelectric Performance and Description of the CuSe Materials and Description of the CuSe Matrix Enabling High Thermoelectric Performance and Description of the CuSe Materials and</i>	9.5	1
18	New criteria for the applicability of combustion synthesis: The investigation of thermodynamic and kinetic processes for binary Chemical Reactions. <i>Journal of Alloys and Compounds</i> , 2021 , 860, 158465	5.7	1
17	Measurements of nonequilibrium interatomic forces using time-domain x-ray scattering. <i>Physical Review B</i> , 2021 , 103,	3.3	1
16	The role of Ge vacancies and Sb doping in GeTe: a comparative study of Thermoelectric Transport Properties in SbxGe1-1.5xTe and SbxGe1-xTe Compounds. <i>Materials Today Physics</i> , 2022 , 100682	8	1
15	Electroresistance in multipolar antiferroelectric CuSe semiconductor. <i>Nature Communications</i> , 2021 , 12, 7207	17.4	1
14	Ordered horizontal Sb2Te3 nanowires induced by femtosecond lasers. <i>Applied Physics Letters</i> , 2014 , 105, 201904	3.4	O
13	Fast ion transport for synthesis and stabilization of 眍nSb. <i>Nature Communications</i> , 2021 , 12, 6077	17.4	0
12	Innentitelbild: Coordination Assembly of Discoid Nanoparticles (Angew. Chem. 31/2015). <i>Angewandte Chemie</i> , 2015 , 127, 8976-8976	3.6	

LIST OF PUBLICATIONS

- Ultrafast-laser Modification of Thermoelectric Sb2Te3 Thin Films. *Materials Research Society Symposia Proceedings*, **2012**, 1456, 1
- 10 Poster: Spin-Related Phenomena 2013, 589-632
- The Effect on Thermoelectric Properties of Cd Substitution in PbTe. *Materials Research Society Symposia Proceedings*, **2009**, 1166, 9
- 8 Magnetic and Electronic Transport Properties of Single Crystal La0.64Pb0.36MnO3. *Materials Research Society Symposia Proceedings*, **1997**, 494, 317
- Investigation of Thermoelectric Materials: Substitution effect of Bi on the Ag1-xPb18MTe20 (M = 7 Sb, Bi) (x = 0, 0.14, 0.3). Materials Research Society Symposia Proceedings, **2007**, 1044, 1
- Effects of Antimony on the Thermoelectric Properties of the Cubic Pb9.6SbyTe10-xSexMaterials.

 Materials Research Society Symposia Proceedings, 2005, 886, 1
- Smoothening of (001) and (111) Cu films epitaxially grown on Si substrates. *Materials Research Society Symposia Proceedings*, **2000**, 648, 1
- Heat conduction in Ba1\(\text{MxBiO3}. \) Journal of Superconductivity and Novel Magnetism, **1995**, 8, 445-448
- Low Temperature Annealing of Rh (111) Surfaces. *Materials Research Society Symposia Proceedings*, **1996**, 440, 317
- MBE-Grown Epitaxial Co/Cr Superlattices. *Materials Research Society Symposia Proceedings*, **1991**, 231, 385
- 1 Nanosession: Calorics99-107