Linquan Bai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3961306/publications.pdf

Version: 2024-02-01

70	1,593 citations	361413 20	330143 37 g-index
papers	citations	h-index	g-maex
71 all docs	71 docs citations	71 times ranked	1449 citing authors

#	Article	IF	CITATIONS
1	Exploring the Molecular Basis of Substrate and Product Selectivities of Nocardicin Bifunctional Thioesterase. Interdisciplinary Sciences, Computational Life Sciences, 2022, 14, 233-244.	3.6	2
2	Activating cryptic biosynthetic gene cluster through a CRISPR–Cas12a-mediated direct cloning approach. Nucleic Acids Research, 2022, 50, 3581-3592.	14.5	23
3	Structural and Mechanistic Insights into Chain Release of the Polyene PKS Thioesterase Domain. ACS Catalysis, 2022, 12, 762-776.	11.2	11
4	Comparative Transcriptome-Based Mining of Genes Involved in the Export of Polyether Antibiotics for Titer Improvement. Antibiotics, 2022, 11, 600.	3.7	3
5	Theoretical study on substrate recognition and catalytic mechanisms of gephyronic acid dehydratase DH1. Catalysis Science and Technology, 2021, 11, 2155-2166.	4.1	5
6	Computational studies on the substrate specificity of an acyltransferase domain from salinomycin polyketide synthase. Catalysis Science and Technology, 2021, 11, 6782-6792.	4.1	3
7	A cold shock protein promotes high-temperature microbial growth through binding to diverse RNA species. Cell Discovery, 2021, 7, 15.	6.7	15
8	Adaptive Optimization Boosted the Production of Moenomycin A in the Microbial Chassis <i>Streptomyces albus</i> J1074. ACS Synthetic Biology, 2021, 10, 2210-2221.	3.8	2
9	Insights into specificity and catalytic mechanism of amphotericin B/nystatin thioesterase. Proteins: Structure, Function and Bioinformatics, 2021, 89, 558-568.	2.6	2
10	Efflux identification and engineering for ansamitocin P-3 production in Actinosynnema pretiosum. Applied Microbiology and Biotechnology, 2021, 105, 695-706.	3.6	7
11	Determination of the Protein-Protein Interactions within Acyl Carrier Protein (MmcB)-Dependent Modifications in the Biosynthesis of Mitomycin. Molecules, 2021, 26, 6791.	3.8	1
12	Structural and Biochemical Insight into the Recruitment of Acyl Carrier Protein‣inked Extender Units in Ansamitocin Biosynthesis. ChemBioChem, 2020, 21, 1309-1314.	2.6	9
13	p-Aminophenylalanine Involved in the Biosynthesis of Antitumor Dnacin B1 for Quinone Moiety Formation. Molecules, 2020, 25, 4186.	3.8	2
14	Defense Mechanism of Phosphorothioated DNA under Peroxynitrite-Mediated Oxidative Stress. ACS Chemical Biology, 2020, 15, 2558-2567.	3.4	8
15	The Antitumor Agent Ansamitocin P-3 Binds to Cell Division Protein FtsZ in Actinosynnema pretiosum. Biomolecules, 2020, 10, 699.	4.0	8
16	Subtilisin-Involved Morphology Engineering for Improved Antibiotic Production in Actinomycetes. Biomolecules, 2020, 10, 851.	4.0	10
17	A severe leakage of intermediates to shunt products in acarbose biosynthesis. Nature Communications, 2020, 11, 1468.	12.8	15
18	Generation of tetramycin B derivative with improved pharmacological property based on pathway engineering. Applied Microbiology and Biotechnology, 2020, 104, 2561-2573.	3.6	9

#	Article	IF	CITATIONS
19	Nonomuraea nitratireducens sp. nov., a new actinobacterium isolated from Suaeda australis Moq. rhizosphere. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 5026-5031.	1.7	7
20	Comparative functional genomics of the acarbose producers reveals potential targets for metabolic engineering. Synthetic and Systems Biotechnology, 2019, 4, 49-56.	3.7	13
21	Structural Insights into the Substrate Specificity of Acyltransferases from Salinomycin Polyketide Synthase. Biochemistry, 2019, 58, 2978-2986.	2.5	12
22	Insight into Structural Characteristics of Protein-Substrate Interaction in Pimaricin Thioesterase. International Journal of Molecular Sciences, 2019, 20, 877.	4.1	2
23	Why does tautomycetin thioesterase prefer hydrolysis to macrocyclization? Theoretical study on its catalytic mechanism. Catalysis Science and Technology, 2019, 9, 6391-6403.	4.1	8
24	A3 foresight network on natural products. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 313-317.	3.0	1
25	Genome engineering for microbial natural product discovery. Current Opinion in Microbiology, 2018, 45, 53-60.	5.1	36
26	Theoretical Studies on the Catalytic Mechanism and Substrate Diversity for Macrocyclization of Pikromycin Thioesterase. ACS Catalysis, 2018, 8, 4323-4332.	11,2	42
27	Stereospecificity of Enoylreductase Domains from Modular Polyketide Synthases. ACS Chemical Biology, 2018, 13, 871-875.	3.4	10
28	Reconstitution of Kinamycin Biosynthesis within the Heterologous Host <i>Streptomyces albus</i> J1074. Journal of Natural Products, 2018, 81, 72-77.	3.0	35
29	Directed accumulation of less toxic pimaricin derivatives by improving the efficiency of a polyketide synthase dehydratase domain. Applied Microbiology and Biotechnology, 2017, 101, 2427-2436.	3.6	5
30	Mechanistic Investigation on ROS Resistance of Phosphorothioated DNA. Scientific Reports, 2017, 7, 42823.	3.3	24
31	Mechanism of salinomycin overproduction in Streptomyces albus as revealed by comparative functional genomics. Applied Microbiology and Biotechnology, 2017, 101, 4635-4644.	3.6	12
32	Enhancement of antibiotic productions by engineered nitrate utilization in actinomycetes. Applied Microbiology and Biotechnology, 2017, 101, 5341-5352.	3.6	33
33	Elimination of indigenous linear plasmids in Streptomyces hygroscopicus var. jinggangensis and Streptomyces sp. FR008 to increase validamycin A and candicidin productivities. Applied Microbiology and Biotechnology, 2017, 101, 4247-4257.	3.6	12
34	Identification and Engineering of Postâ€PKS Modification Bottlenecks for Ansamitocin Pâ€3 Titer Improvement in <i>Actinosynnema pretiosum</i> subsp <i>. pretiosum</i> ATCC 31280. Biotechnology Journal, 2017, 12, 1700484.	3.5	24
35	Improved PKS Gene Expression With Strong Endogenous Promoter Resulted in Geldanamycin Yield Increase. Biotechnology Journal, 2017, 12, 1700321.	3 . 5	14
36	Conversion of the high-yield salinomycin producer Streptomyces albus BK3-25 into a surrogate host for polyketide production. Science China Life Sciences, 2017, 60, 1000-1009.	4.9	16

#	Article	IF	Citations
37	Improving acarbose production and eliminating the by-product component C with an efficient genetic manipulation system of Actinoplanes sp. SE50/110. Synthetic and Systems Biotechnology, 2017, 2, 302-309.	3.7	14
38	Identification and engineering of regulation-related genes toward improved kasugamycin production. Applied Microbiology and Biotechnology, 2016, 100, 1811-1821.	3.6	9
39	Effects of modulation of pentose-phosphate pathway on biosynthesis of ansamitocins in Actinosynnema pretiosum. Journal of Biotechnology, 2016, 230, 3-10.	3.8	13
40	Theoretical Studies on the Mechanism of Thioesterase-Catalyzed Macrocyclization in Erythromycin Biosynthesis. ACS Catalysis, 2016, 6, 4369-4378.	11.2	32
41	Enhancement of UDPG synthetic pathway improves ansamitocin production in Actinosynnem pretiosum. Applied Microbiology and Biotechnology, 2016, 100, 2651-2662.	3.6	14
42	Enhanced salinomycin production by adjusting the supply of polyketide extender units in Streptomyces albus. Metabolic Engineering, 2016, 35, 129-137.	7.0	72
43	<i>De Novo</i> Biosynthesis of \hat{l}^2 -Valienamine in Engineered <i>Streptomyces hygroscopicus</i> ACS Synthetic Biology, 2016, 5, 15-20.	3.8	9
44	Formation of the Δ ^{18,19} Double Bond and Bis(spiroacetal) in Salinomycin Is Atypically Catalyzed by SlnM, a Methyltransferaseâ€like Enzyme. Angewandte Chemie - International Edition, 2015, 54, 9097-9100.	13.8	24
45	Engineered biosynthesis of pimaricin derivatives with improved antifungal activity and reduced cytotoxicity. Applied Microbiology and Biotechnology, 2015, 99, 6745-6752.	3.6	20
46	Engineering validamycin production by tandem deletion of \hat{I}^3 -butyrolactone receptor genes in Streptomyces hygroscopicus 5008. Metabolic Engineering, 2015, 28, 74-81.	7.0	54
47	Positive and negative regulation of GlnR in validamycin A biosynthesis by binding to different loci in promoter region. Applied Microbiology and Biotechnology, 2015, 99, 4771-4783.	3.6	30
48	In Silico Discovery of Aminoacyl-tRNA Synthetase Inhibitors. International Journal of Molecular Sciences, 2014, 15, 1358-1373.	4.1	15
49	Exogenous 1,4â€butyrolactone stimulates Aâ€factorâ€like cascade and validamycin biosynthesis in <i>Streptomyces hygroscopicus</i> 5008. Biotechnology and Bioengineering, 2013, 110, 2984-2993.	3.3	45
50	Asm8, a specific LAL-type activator of 3-amino-5-hydroxybenzoate biosynthesis in ansamitocin production. Science China Life Sciences, 2013, 56, 601-608.	4.9	15
51	Tandem Modifications of an Epoxyquinone C7N Pharmacophore. Chemistry and Biology, 2013, 20, 859-860.	6.0	0
52	Toward steadfast growth of antibiotic research in China: From natural products to engineered biosynthesis. Biotechnology Advances, 2012, 30, 1228-1241.	11.7	5
53	Cloning and Characterization of the Polyether Salinomycin Biosynthesis Gene Cluster of Streptomyces albus XM211. Applied and Environmental Microbiology, 2012, 78, 994-1003.	3.1	61
54	Biosynthesis of 3,5-AHBA-derived natural products. Natural Product Reports, 2012, 29, 243-263.	10.3	104

#	Article	IF	Citations
55	Inactivation of the positive LuxR-type oligomycin biosynthesis regulators OlmRI and OlmRII increases avermectin production in Streptomyces avermitilis. Science Bulletin, 2012, 57, 869-876.	1.7	18
56	Structural and Functional Analysis of Validoxylamine A 7′-phosphate Synthase ValL Involved in Validamycin A Biosynthesis. PLoS ONE, 2012, 7, e32033.	2.5	15
57	Dual Carbamoylations on the Polyketide and Glycosyl Moiety by Asm21 Result in Extended Ansamitocin Biosynthesis. Chemistry and Biology, 2011, 18, 1571-1580.	6.0	17
58	Overexpression of the ABC transporter AvtAB increases avermectin production in Streptomyces avermitilis. Applied Microbiology and Biotechnology, 2011, 92, 337-345.	3.6	65
59	Nâ€Methylation of the Amide Bond by Methyltransferase Asm10 in Ansamitocin Biosynthesis. ChemBioChem, 2011, 12, 1759-1766.	2.6	16
60	15th International symposium on the biology of the Actinomycetes; Shanghai 2009. Antonie Van Leeuwenhoek, 2010, 98, 117-118.	1.7	0
61	Effect of ammonium in medium on ansamitocin P-3 production by Actinosynnema pretiosum. Biotechnology and Bioprocess Engineering, 2010, 15, 119-125.	2.6	14
62	Two pHZ1358 Derivative Vectors for Efficient Gene Knockout in Streptomyces. Journal of Microbiology and Biotechnology, 2010, 20, 678-682.	2.1	50
63	Functional characterization of the first two actinomycete 4-amino-4-deoxychorismate lyase genes. Microbiology (United Kingdom), 2009, 155, 2450-2459.	1.8	16
64	Enhanced validamycin production and gene expression at elevated temperature in Streptomyces hygroscopicus subsp. jingangensis 5008. Science Bulletin, 2009, 54, 1204-1209.	9.0	6
65	Genetically engineered production of $1,1\hat{a}\in^2$ -bis-valienamine and validienamycin in Streptomyces hygroscopicus and their conversion to valienamine. Applied Microbiology and Biotechnology, 2009, 81, 895-902.	3.6	20
66	Alternative Epimerization in C7N-Aminocyclitol Biosynthesis Is Catalyzed by ValD, A Large Protein of the Vicinal Oxygen Chelate Superfamily. Chemistry and Biology, 2009, 16, 567-576.	6.0	25
67	Overexpression of yeast S-adenosylmethionine synthetase metK in Streptomyces actuosus leads to increased production of nosiheptide. Applied Microbiology and Biotechnology, 2008, 78, 991-995.	3.6	20
68	Amide N-Glycosylation by Asm25, an N-Glycosyltransferase of Ansamitocins. Chemistry and Biology, 2008, 15, 863-874.	6.0	29
69	ValC, a New Type of C7-Cyclitol Kinase Involved in the Biosynthesis of the Antifungal Agent Validamycin A. ChemBioChem, 2007, 8, 632-641.	2.6	33
70	The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7968-7973.	7.1	270