
Benedict D Rogers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3961227/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DualSPHysics: from fluid dynamics to multiphysics problems. Computational Particle Mechanics, 2022, 9, 867-895.	1.5	131
2	Simulation of flow past a sphere on a rough bed using smoothed particle hydrodynamics (SPH). Computational Particle Mechanics, 2022, 9, 927-940.	1.5	3
3	Eulerian incompressible smoothed particle hydrodynamics on multiple GPUs. Computer Physics Communications, 2022, 273, 108263.	3.0	7
4	Implicit iterative particle shifting for meshless numerical schemes using kernel basis functions. Computer Methods in Applied Mechanics and Engineering, 2022, 393, 114716.	3.4	10
5	Focused wave interaction with a partially-immersed rectangular box using 2-D incompressible SPH on a GPU comparing with experiment and linear theory. European Journal of Mechanics, B/Fluids, 2022, 95, 252-275.	1.2	5
6	Experimental and Numerical Investigation of Floating Large Woody Debris Impact on a Masonry Arch Bridge. Journal of Marine Science and Engineering, 2022, 10, 911.	1.2	3
7	Grand challenges for Smoothed Particle Hydrodynamics numerical schemes. Computational Particle Mechanics, 2021, 8, 575-588.	1.5	114
8	High-order velocity and pressure wall boundary conditions in Eulerian incompressible SPH. Journal of Computational Physics, 2021, 434, 109793.	1.9	13
9	Influence of Orientation and Arrangement of Structures on Tsunami Impact Forces: Numerical Investigation with Smoothed Particle Hydrodynamics. Journal of Waterway, Port, Coastal and Ocean Engineering, 2021, 147, 04021006.	0.5	16
10	A fluid–structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU. Journal of Fluids and Structures, 2021, 104, 103312.	1.5	46
11	Towards pseudo-spectral incompressible smoothed particle hydrodynamics (ISPH). Computer Physics Communications, 2021, 266, 108028.	3.0	4
12	Large deformation analysis of granular materials with stabilized and noise-free stress treatment in smoothed particle hydrodynamics (SPH). Computers and Geotechnics, 2021, 138, 104356.	2.3	18
13	High-order consistent SPH with the pressure projection method in 2-D and 3-D. Journal of Computational Physics, 2021, 444, 110563.	1.9	15
14	Flood-Induced Hydrodynamic and Debris Impact Forces on Single-Span Masonry Arch Bridge. Journal of Hydraulic Engineering, 2021, 147, .	0.7	11
15	Massively Parallel Particle Hydrodynamics at exa-scale. Computing in Science and Engineering, 2021, , 1-1.	1.2	0
16	An incompressible smoothed particle hydrodynamics scheme for Newtonian/nonâ€Newtonian multiphase flows including semiâ€analytical solutions for twoâ€phase inelastic Poiseuille flows. International Journal for Numerical Methods in Fluids, 2020, 92, 703-726.	0.9	8
17	Review of smoothed particle hydrodynamics: towards converged Lagrangian flow modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20190801.	1.0	76
18	New instability and mixing simulations using SPH and a novel mixing measure. Journal of Hydrodynamics, 2020, 32, 684-698.	1.3	6

BENEDICT D ROGERS

#	Article	IF	CITATIONS
19	Vector-based discrete element method for solid elastic materials. Computer Physics Communications, 2020, 254, 107353.	3.0	7
20	Local uniform stencil (LUST) boundary condition for arbitrary 3-D boundaries in parallel smoothed particle hydrodynamics (SPH) models. Computers and Fluids, 2019, 190, 346-361.	1.3	109
21	Modelling shore-side pressure distributions from violent wave breaking at a seawall. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 2019, 172, 118-123.	0.4	3
22	Numerical wave basin using incompressible smoothed particle hydrodynamics (ISPH) on a single GPU with vertical cylinder test cases. Computers and Fluids, 2019, 179, 543-562.	1.3	32
23	Flexible slender body fluid interaction: Vector-based discrete element method with Eulerian smoothed particle hydrodynamics. Computers and Fluids, 2019, 179, 563-578.	1.3	18
24	Eulerian weakly compressible smoothed particle hydrodynamics (SPH) with the immersed boundary method for thin slender bodies. Journal of Fluids and Structures, 2019, 84, 263-282.	1.5	25
25	Incompressible SPH (ISPH) with fast Poisson solver on a GPU. Computer Physics Communications, 2018, 226, 81-103.	3.0	74
26	Multi-phase SPH model for simulation of erosion and scouring by means of the shields and Drucker–Prager criteria Advances in Water Resources, 2018, 117, 98-114.	1.7	52
27	An Eulerian–Lagrangian incompressible SPH formulation (ELI-SPH) connected with a sharp interface. Computer Methods in Applied Mechanics and Engineering, 2018, 329, 532-552.	3.4	44
28	Numerical modelling of wave downfall pressures on the deck landward of a vertical breakwater. , 2018, , .		0
29	New massively parallel scheme for Incompressible Smoothed Particle Hydrodynamics (ISPH) for highly nonlinear and distorted flow. Computer Physics Communications, 2018, 233, 16-28.	3.0	45
30	On the Coupling of Incompressible SPH with a Finite Element Potential Flow Solver for Nonlinear Free-Surface Flows. International Journal of Offshore and Polar Engineering, 2018, 28, 248-254.	0.3	15
31	Landslides and tsunamis predicted by incompressible smoothed particle hydrodynamics (SPH) with application to the 1958 Lituya Bay event and idealized experiment. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20160674.	1.0	30
32	Unsteady open boundaries for SPH using semi-analytical conditions and Riemann solver in 2D. Computer Physics Communications, 2017, 210, 29-44.	3.0	33
33	Smoothed Particle Hydrodynamics (SPH) modelling of transient heat transfer in pulsed laser ablation of Al and associated free-surface problems. Computational Materials Science, 2017, 127, 161-179.	1.4	41
34	A multi-phase particle shifting algorithm for SPH simulations of violent hydrodynamics with a large number of particles. Journal of Hydraulic Research/De Recherches Hydrauliques, 2017, 55, 143-162.	0.7	78
35	Editorial: efficient design in a modern engineering world – the challenges. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 2017, 170, 89-90.	0.4	0
36	A theoretical model for quantifying expansion of intumescent coating under different heating conditions. Polymer Engineering and Science, 2016, 56, 798-809.	1.5	25

#	Article	IF	CITATIONS
37	Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU). Advances in Water Resources, 2016, 92, 186-199.	1.7	125
38	Modelling of tsunami-induced bore and structure interaction. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 2016, 169, 109-125.	0.4	14
39	Fixed and moored bodies in steep and breaking waves using SPH with the Froude–Krylov approximation. Journal of Ocean Engineering and Marine Energy, 2016, 2, 331-354.	0.9	23
40	Composite modelling of subaerial landslide–tsunamis in different water body geometries and novel insight into slide and wave kinematics. Coastal Engineering, 2016, 109, 20-41.	1.7	114
41	Assessment of the thermal conductivity of intumescent coatings in fire. Fire Safety Journal, 2016, 81, 74-84.	1.4	80
42	Incompressible–compressible flows with a transient discontinuous interface using smoothed particle hydrodynamics (SPH). Journal of Computational Physics, 2016, 309, 129-147.	1.9	71
43	Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future. Journal of Hydraulic Research/De Recherches Hydrauliques, 2016, 54, 1-26.	0.7	358
44	Variable resolution for SPH in three dimensions: Towards optimal splitting and coalescing for dynamic adaptivity. Computer Methods in Applied Mechanics and Engineering, 2016, 300, 442-460.	3.4	73
45	On the approximate zeroth and firstâ€order consistency in the presence of 2â€D irregular boundaries in SPH obtained by the virtual boundary particle methods. International Journal for Numerical Methods in Fluids, 2015, 78, 475-501.	0.9	27
46	INCOMPRESSIBLE SMOOTHED PARTICLE HYDRODYNAMICS (ISPH) MODELLING OF BREAKWATER OVERTOPPING. Coastal Engineering Proceedings, 2015, 1, 6.	0.1	2
47	Numerical predictions of water–air wave slam using incompressible–compressible smoothed particle hydrodynamics. Applied Ocean Research, 2015, 49, 57-71.	1.8	74
48	Automotive fuel cell sloshing under temporally and spatially varying high acceleration using GPU-based Smoothed Particle Hydrodynamics (SPH). Advances in Engineering Software, 2015, 83, 31-44.	1.8	21
49	An incompressible SPH scheme with improved pressure predictions for free-surface generalised Newtonian flows. Journal of Non-Newtonian Fluid Mechanics, 2015, 218, 1-15.	1.0	38
50	Multi-phase SPH modelling of violent hydrodynamics on GPUs. Computer Physics Communications, 2015, 196, 304-316.	3.0	89
51	DNS and LES of 3-D wall-bounded turbulence using Smoothed Particle Hydrodynamics. Computers and Fluids, 2015, 115, 86-97.	1.3	46
52	DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH). Computer Physics Communications, 2015, 187, 204-216.	3.0	549
53	THE IMPORTANCE OF LONG WAVE REFLECTIONS IN TIDAL MODELLING ON A CONTINENTAL SHELF. Coastal Engineering Proceedings, 2015, 1, 27.	0.1	1
54	MODELLING THE IMPACT OF TSUNAMIS ON COASTAL DEFENCES IN THE UK. Coastal Engineering Proceedings, 2015, 1, 36.	0.1	2

BENEDICT D ROGERS

#	Article	IF	CITATIONS
55	Numerical modelling of armour block sea breakwater with smoothed particle hydrodynamics. Computers and Structures, 2014, 130, 34-45.	2.4	125
56	Boussinesq modelling of tsunami and storm wave impact. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 2014, 167, 106-116.	0.4	7
57	Tsunami wave and structure interaction: an investigation with smoothed-particle hydrodynamics. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 2014, 167, 126-138.	0.4	18
58	Investigation of Wave-Structure Interaction Using State of the Art CFD Techniques. Open Journal of Fluid Dynamics, 2014, 04, 18-43.	0.3	42
59	Unified semiâ€analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method. International Journal for Numerical Methods in Fluids, 2013, 71, 446-472.	0.9	182
60	A correction for balancing discontinuous bed slopes in twoâ€dimensional smoothed particle hydrodynamics shallow water modeling. International Journal for Numerical Methods in Fluids, 2013, 71, 850-872.	0.9	19
61	Investigation of wall bounded flows using SPH and the unified semi-analytical wall boundary conditions. Computer Physics Communications, 2013, 184, 2515-2527.	3.0	58
62	Towards accelerating smoothed particle hydrodynamics simulations for free-surface flows on multi-GPU clusters. Journal of Parallel and Distributed Computing, 2013, 73, 1483-1493.	2.7	51
63	Understanding the behaviour of pulsed laser dry and wet micromachining processes by multi-phase smoothed particle hydrodynamics (SPH) modelling. Journal Physics D: Applied Physics, 2013, 46, 095101.	1.3	23
64	SPH for 3D floating bodies using variable mass particle distribution. International Journal for Numerical Methods in Fluids, 2013, 72, 427-452.	0.9	85
65	New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters. Computer Physics Communications, 2013, 184, 1848-1860.	3.0	142
66	Variable resolution for SPH: A dynamic particle coalescing and splitting scheme. Computer Methods in Applied Mechanics and Engineering, 2013, 256, 132-148.	3.4	184
67	Shallow water SPH for flooding with dynamic particle coalescing and splitting. Advances in Water Resources, 2013, 58, 10-23.	1.7	41
68	Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body–water slam and efficient wave–body interaction. Computer Methods in Applied Mechanics and Engineering, 2013, 265, 163-173.	3.4	185
69	An integrated model system for coastal flood prediction with a case history for <scp>W</scp> alcott, <scp>UK</scp> , on 9 <scp>N</scp> ovember 2007. Journal of Flood Risk Management, 2013, 6, 229-252.	1.6	13
70	Modelling sediment resuspension in industrial tanks using SPH. Houille Blanche, 2013, 99, 39-45.	0.3	24
71	Flood Wave Modeling Based on a Two-Dimensional Modified Wave Propagation Algorithm Coupled to a Full-Pipe Network Solver. Journal of Hydraulic Engineering, 2012, 138, 247-259.	0.7	19
72	SPHysics – development of a free-surface fluid solver – Part 1: Theory and formulations. Computers and Geosciences, 2012, 48, 289-299.	2.0	270

BENEDICT D ROGERS

#	Article	IF	CITATIONS
73	SPHysics – development of a free-surface fluid solver – Part 2: Efficiency and test cases. Computers and Geosciences, 2012, 48, 300-307.	2.0	110
74	SPH Modeling of Shallow Flow with Open Boundaries for Practical Flood Simulation. Journal of Hydraulic Engineering, 2012, 138, 530-541.	0.7	106
75	Three-phase 3D modelling of a laser cutting process using smoothed particle hydrodynamics (SPH). , 2012, , .		2
76	Smoothed Particle Hydrodynamics: Approximate zero onsistent 2â€D boundary conditions and still shallowâ€water tests. International Journal for Numerical Methods in Fluids, 2012, 69, 226-253.	0.9	51
77	Accurate particle splitting for smoothed particle hydrodynamics in shallow water with shock capturing. International Journal for Numerical Methods in Fluids, 2012, 69, 1377-1410.	0.9	72
78	Smoothed particle hydrodynamics method applied to pulsatile flow inside a rigid twoâ€dimensional model of left heart cavity. International Journal for Numerical Methods in Biomedical Engineering, 2012, 28, 1121-1143.	1.0	24
79	Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. Journal of Computational Physics, 2012, 231, 1499-1523.	1.9	496
80	Wave body interaction in 2D using smoothed particle hydrodynamics (SPH) with variable particle mass. International Journal for Numerical Methods in Fluids, 2012, 68, 686-705.	0.9	86
81	iCOASST – INTEGRATING COASTAL SEDIMENT SYSTEMS. Coastal Engineering Proceedings, 2012, 1, 100.	0.1	20
82	On the approximation of local efflux/influx bed discharge in the shallow water equations based on a wave propagation algorithm. International Journal for Numerical Methods in Fluids, 2011, 66, 1295-1314.	0.9	10
83	GPUs, a New Tool of Acceleration in CFD: Efficiency and Reliability on Smoothed Particle Hydrodynamics Methods. PLoS ONE, 2011, 6, e20685.	1.1	175
84	State-of-the-art of classical SPH for free-surface flows. Journal of Hydraulic Research/De Recherches Hydrauliques, 2010, 48, 6-27.	0.7	281
85	SMOOTHED PARTICLE HYDRODYNAMICS FOR WATER WAVES. Series on Quality, Reliability and Engineering Statistics, 2010, , 465-495.	0.2	5
86	Simulation of caisson breakwater movement using 2-D SPH. Journal of Hydraulic Research/De Recherches Hydrauliques, 2010, 48, 135-141.	0.7	92
87	Foreword: SPH for free-surface flows. Journal of Hydraulic Research/De Recherches Hydrauliques, 2010, 48, 3-5.	0.7	39
88	SPH MODELING OF FLOATING BODIES IN THE SURF ZONE. , 2009, , .		5
89	The Effects of Building Representation and Clustering in Large-Eddy Simulations of Flows in Urban Canopies. Boundary-Layer Meteorology, 2009, 132, 415-436.	1.2	72
90	SPH MODELING OF TSUNAMI WAVES. Series on Quality, Reliability and Engineering Statistics, 2008, , 75-100.	0.2	37

#	Article	IF	CITATIONS
91	Smoothed Particle Hydrodynamics for Water Waves. , 2007, , 321.		4
92	A NOTE ON WAVE CELERITIES ON A COMPRESSIBLE FLUID. , 2007, , .		3
93	Numerical modeling of water waves with the SPH method. Coastal Engineering, 2006, 53, 141-147.	1.7	557
94	SPH MODELING OF BREAKING WAVES. , 2005, , .		10
95	Godunov-type adaptive grid model of wave–current interaction at cuspate beaches. International Journal for Numerical Methods in Fluids, 2004, 46, 569-606.	0.9	8
96	Mathematical balancing of flux gradient and source terms prior to using Roe's approximate Riemann solver. Journal of Computational Physics, 2003, 192, 422-451.	1.9	165
97	GODUNOV-TYPE MODEL OF WAVE-INDUCED NEARSHORE CURRENTS AT A MULTI-CUSPED BEACH IN THE UKCRF. , 2003, , .		1
98	Godunov Solution of Shallow Water Equations on Curvilinear and Quadtree Grids. , 2001, , 141-148.		0
99	Q-Tree Model of Nearshore Flows at Multi-Cusps. , 2001, , 3419.		0
100	Adaptive Q-tree Godunov-type scheme for shallow water equations. International Journal for Numerical Methods in Fluids, 2001, 35, 247-280.	0.9	95
101	Seaweed ingress of cooling water intakes with predictions for Torness power station. Journal of Ocean Engineering and Marine Energy, 0, , 1.	0.9	0