
Hua Bing Tao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3961016/publications.pdf Version: 2024-02-01

ΗΠΑ ΒΙΝΟ ΤΛΟ

#	Article	IF	CITATIONS
1	Amorphous alloys for electrocatalysis: The significant role of the amorphous alloy structure. Nano Research, 2023, 16, 4277-4288.	5.8	32
2	Towards the Rational Design of Stable Electrocatalysts for Green Hydrogen Production. Catalysts, 2022, 12, 204.	1.6	1
3	Kinetic Insights of Proton Exchange Membrane Water Electrolyzer Obtained by <i>Operando</i> Characterization Methods. Journal of Physical Chemistry Letters, 2022, 13, 6520-6531.	2.1	12
4	Noble metal nanowire arrays as an ethanol oxidation electrocatalyst. Nanoscale Advances, 2021, 3, 177-181.	2.2	6
5	Ordered clustering of single atomic Te vacancies in atomically thin PtTe2 promotes hydrogen evolution catalysis. Nature Communications, 2021, 12, 2351.	5.8	83
6	Progress of Nonpreciousâ€Metalâ€Based Electrocatalysts for Oxygen Evolution in Acidic Media. Advanced Materials, 2021, 33, e2003786.	11.1	166
7	<i>In Situ</i> Precise Tuning of Bimetallic Electronic Effect for Boosting Oxygen Reduction Catalysis. Nano Letters, 2021, 21, 7753-7760.	4.5	24
8	Amorphous Multimetal Alloy Oxygen Evolving Catalysts. , 2020, 2, 624-632.		45
9	Amorphous versus Crystalline in Water Oxidation Catalysis: A Case Study of NiFe Alloy. Nano Letters, 2020, 20, 4278-4285.	4.5	201
10	Single-Ni-atom catalyzes aqueous phase electrochemical reductive dechlorination reaction. Applied Catalysis B: Environmental, 2020, 277, 119057.	10.8	51
11	Advances in Thermodynamic-Kinetic Model for Analyzing the Oxygen Evolution Reaction. ACS Catalysis, 2020, 10, 8597-8610.	5.5	89
12	Tuning reactivity of Fischer–Tropsch synthesis by regulating TiOx overlayer over Ru/TiO2 nanocatalysts. Nature Communications, 2020, 11, 3185.	5.8	114
13	Electrostatic self-assembly of a AgI/Bi ₂ Ga ₄ O ₉ p–n junction photocatalyst for boosting superoxide radical generation. Journal of Materials Chemistry A, 2020, 8, 4083-4090.	5.2	73
14	Revealing Energetics of Surface Oxygen Redox from Kinetic Fingerprint in Oxygen Electrocatalysis. Journal of the American Chemical Society, 2019, 141, 13803-13811.	6.6	151
15	Layered Structure Causes Bulk NiFe Layered Double Hydroxide Unstable in Alkaline Oxygen Evolution Reaction. Advanced Materials, 2019, 31, e1903909.	11.1	345
16	An essential descriptor for the oxygen evolution reaction on reducible metal oxide surfaces. Chemical Science, 2019, 10, 3340-3345.	3.7	63
17	Nanostructuring Confinement for Controllable Interfacial Charge Transfer. Small, 2019, 15, e1804391.	5.2	13
18	A General Method to Probe Oxygen Evolution Intermediates at Operating Conditions. Joule, 2019, 3, 1498-1509	11.7	243

Hua Bing Tao

#	Article	IF	CITATIONS
19	An Earthâ€Abundant Catalystâ€Based Seawater Photoelectrolysis System with 17.9% Solarâ€toâ€Hydrogen Efficiency. Advanced Materials, 2018, 30, e1707261.	11.1	189
20	Unraveling the Intrinsic Structures that Influence the Transport of Charges in TiO ₂ Electrodes. Advanced Energy Materials, 2017, 7, 1700886.	10.2	28
21	Surface Rutilization of Anatase TiO ₂ Nanorods for Creation of Synergistically Bridging and Fencing Electron Highways. Advanced Functional Materials, 2016, 26, 456-465.	7.8	52
22	Identification of Surface Reactivity Descriptor for Transition Metal Oxides in Oxygen Evolution Reaction. Journal of the American Chemical Society, 2016, 138, 9978-9985.	6.6	345
23	Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Science Advances, 2016, 2, e1501122.	4.7	1,078
24	Achieving stable and efficient water oxidation by incorporating NiFe layered double hydroxide nanoparticles into aligned carbon nanotubes. Nanoscale Horizons, 2016, 1, 156-160.	4.1	99
25	Tunneling Interlayer for Efficient Transport of Charges in Metal Oxide Electrodes. Journal of the American Chemical Society, 2016, 138, 3183-3189.	6.6	42
26	Oneâ€Dimensional Hybrid Nanostructures for Heterogeneous Photocatalysis and Photoelectrocatalysis. Small, 2015, 11, 2115-2131.	5.2	213
27	Biomolecule-assisted synthesis of carbon nitride and sulfur-doped carbon nitride heterojunction nanosheets: An efficient heterojunction photocatalyst for photoelectrochemical applications. Beilstein Journal of Nanotechnology, 2014, 5, 770-777.	1.5	15
28	Spatially branched hierarchical ZnO nanorod-TiO ₂ nanotube array heterostructures for versatile photocatalytic and photoelectrocatalytic applications: towards intimate integration of 1D–1D hybrid nanostructures. Nanoscale, 2014, 6, 14950-14961.	2.8	101