## Susana M Gallego

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3960878/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms.<br>Environmental and Experimental Botany, 2012, 83, 33-46.                                                          | 4.2 | 956       |
| 2  | Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 2005, 17, 21-34.                                                                                                                           | 0.5 | 876       |
| 3  | Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress.<br>Plant Science, 1996, 121, 151-159.                                                                     | 3.6 | 601       |
| 4  | Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons. Plant Science, 2002,<br>162, 939-945.                                                                                         | 3.6 | 218       |
| 5  | Title is missing!. Plant Growth Regulation, 2003, 40, 81-88.                                                                                                                                                  | 3.4 | 111       |
| 6  | Oxidative post translational modifications of proteins related to cell cycle are involved in cadmium toxicity in wheat seedlings. Plant Science, 2012, 196, 1-7.                                              | 3.6 | 76        |
| 7  | Proteolytic system in sunflower (Helianthus annuus L.) leaves under cadmium stress. Plant Science,<br>2006, 171, 531-537.                                                                                     | 3.6 | 59        |
| 8  | 20S proteasome and accumulation of oxidized and ubiquitinated proteins in maize leaves subjected to cadmium stress. Phytochemistry, 2007, 68, 1139-1146.                                                      | 2.9 | 53        |
| 9  | Mechanism of CATA3 induction by cadmium in sunflower leaves. Plant Physiology and Biochemistry, 2007, 45, 589-595.                                                                                            | 5.8 | 47        |
| 10 | Glutathione-mediated Antioxidative Mechanisms in Sunflower (Helianthus Annuus L.) Cells in<br>Response to Cadmium Stress. Plant Growth Regulation, 2005, 46, 267-276.                                         | 3.4 | 44        |
| 11 | Heavy metals effects on proteolytic system in sunflower leaves. Chemosphere, 2008, 72, 741-746.                                                                                                               | 8.2 | 44        |
| 12 | Sunflower cotyledons cope with copper stress by inducing catalase subunits less sensitive to oxidation. Journal of Trace Elements in Medicine and Biology, 2011, 25, 125-129.                                 | 3.0 | 37        |
| 13 | The control of root growth by reactive oxygen species in Salix nigra Marsh. seedlings. Plant Science, 2012, 183, 197-205.                                                                                     | 3.6 | 29        |
| 14 | Priming with NO controls redox state and prevents cadmium-induced general up-regulation of methionine sulfoxide reductase gene family in Arabidopsis. Biochimie, 2016, 131, 128-136.                          | 2.6 | 22        |
| 15 | Early response of wheat seminal roots growing under copper excess. Plant Physiology and Biochemistry, 2015, 87, 115-123.                                                                                      | 5.8 | 21        |
| 16 | Osmotic adjustment and maintenance of the redox balance in root tissue may be key points to<br>overcome a mild water deficit during the early growth of wheat. Plant Growth Regulation, 2014, 74,<br>107-117. | 3.4 | 14        |
| 17 | Early responses of maize seedlings to Cu stress include sharp decreases in gibberellins and jasmonates<br>in the root apex. Protoplasma, 2020, 257, 1243-1256.                                                | 2.1 | 12        |
| 18 | Unravelling ties in the nitrogen network: Polyamines and nitric oxide emerging as essential players in signalling roadway. Annals of Applied Biology, 2021, 178, 192-208.                                     | 2.5 | 12        |

SUSANA M GALLEGO

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effect of different metals on protease activity in sunflower cotyledons. Electronic Journal of<br>Biotechnology, 2006, 9, 0-0.                                                                        | 2.2 | 12        |
| 20 | Biochemical and hormonal changes associated with root growth restriction under cadmium stress during maize (Zea mays L.) pre-emergence. Plant Growth Regulation, 2022, 96, 269-281.                   | 3.4 | 12        |
| 21 | Optimization of recombinant maize CDKA;1 and CycD6;1 production in Escherichia coli by response surface methodology. Protein Expression and Purification, 2020, 165, 105483.                          | 1.3 | 11        |
| 22 | Tyr-nitration in maize CDKA;1 results in lower affinity for ATP binding. Biochimica Et Biophysica Acta -<br>Proteins and Proteomics, 2020, 1868, 140479.                                              | 2.3 | 10        |
| 23 | Metabolic rearrangements in imbibed maize (Zea mays L) embryos in the presence of oxidative stressors. Plant Physiology and Biochemistry, 2020, 155, 560-569.                                         | 5.8 | 8         |
| 24 | Oxidation of proline from the cyclin-binding motif in maize CDKA;1 results in lower affinity with its cyclin regulatory subunit. Phytochemistry, 2020, 169, 112165.                                   | 2.9 | 3         |
| 25 | An isopentenyl transferase transgenic wheat isoline exhibits less seminal root growth impairment<br>and a differential metabolite profile under Cd stress. Physiologia Plantarum, 2021, 173, 223-234. | 5.2 | 3         |
| 26 | The nitric oxide challenges during metal stress. , 2022, , 503-537.                                                                                                                                   |     | 0         |