
Hanjun Ryu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3960815/publications.pdf Version: 2024-02-01

ΗλΝΙΙΙΝ Ρνιι

#	Article	IF	CITATIONS
1	A Skinâ€Interfaced, Miniaturized Microfluidic Analysis and Delivery System for Colorimetric Measurements of Nutrients in Sweat and Supply of Vitamins Through the Skin. Advanced Science, 2022, 9, e2103331.	5.6	53
2	A wireless haptic interface for programmable patterns of touch across large areas of the skin. Nature Electronics, 2022, 5, 374-385.	13.1	83
3	Piezoionic-powered graphene strain sensor based on solid polymer electrolyte. Nano Energy, 2021, 81, 105610.	8.2	20
4	Emerging Pyroelectric Nanogenerators to Convert Thermal Energy into Electrical Energy. Small, 2021, 17, e1903469.	5.2	84
5	Bioresorbable Metals for Biomedical Applications: From Mechanical Components to Electronic Devices. Advanced Healthcare Materials, 2021, 10, e2002236.	3.9	35
6	Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids. Science Advances, 2021, 7, .	4.7	128
7	Transparent, Compliant 3D Mesostructures for Precise Evaluation of Mechanical Characteristics of Organoids. Advanced Materials, 2021, 33, e2100026.	11.1	23
8	Differential cardiopulmonary monitoring system for artifact-canceled physiological tracking of athletes, workers, and COVID-19 patients. Science Advances, 2021, 7, .	4.7	55
9	3D Microstructures: Transparent, Compliant 3D Mesostructures for Precise Evaluation of Mechanical Characteristics of Organoids (Adv. Mater. 25/2021). Advanced Materials, 2021, 33, 2170196.	11.1	0
10	Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators. Nature Communications, 2021, 12, 4374.	5.8	158
11	Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries. Nature Communications, 2021, 12, 5008.	5.8	83
12	Simultaneous enhancement of specific capacitance and potential window of graphene-based electric double-layer capacitors using ferroelectric polymers. Journal of Power Sources, 2021, 507, 230268.	4.0	5
13	Skinâ€Integrated Devices with Soft, Holey Architectures for Wireless Physiological Monitoring, With Applications in the Neonatal Intensive Care Unit. Advanced Materials, 2021, 33, e2103974.	11.1	35
14	Bioresorbable Multilayer Photonic Cavities as Temporary Implants for Tether-Free Measurements of Regional Tissue Temperatures. BME Frontiers, 2021, 2021, .	2.2	7
15	Wireless, skin-interfaced sensors for compression therapy. Science Advances, 2020, 6, .	4.7	52
16	Triboelectric Nanogenerators: High Permittivity CaCu ₃ Ti ₄ O ₁₂ Particleâ€Induced Internal Polarization Amplification for High Performance Triboelectric Nanogenerators (Adv. Energy Mater. 9/2020). Advanced Energy Materials, 2020, 10, 2070040.	10.2	19
17	High Permittivity CaCu ₃ Ti ₄ O ₁₂ Particleâ€Induced Internal Polarization Amplification for High Performance Triboelectric Nanogenerators. Advanced Energy Materials, 2020, 10, 1903524.	10.2	85
18	Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science, 2019, 365, 491-494.	6.0	569

Hanjun Ryu

#	Article	IF	CITATIONS
19	Energy Harvesters: Hybrid Energy Harvesters: Toward Sustainable Energy Harvesting (Adv. Mater.) Tj ETQq1 1 0.	784314 rg 11.1	gBT _g /Overlock
20	Butylated melamine formaldehyde as a durable and highly positive friction layer for stable, high output triboelectric nanogenerators. Energy and Environmental Science, 2019, 12, 3156-3163.	15.6	107
21	Hybrid Energy Harvesters: Toward Sustainable Energy Harvesting. Advanced Materials, 2019, 31, e1802898.	11.1	223
22	Sustainable direct current powering a triboelectric nanogenerator <i>via</i> a novel asymmetrical design. Energy and Environmental Science, 2018, 11, 2057-2063.	15.6	153
23	Sustainable powering triboelectric nanogenerators: Approaches and the path towards efficient use. Nano Energy, 2018, 51, 270-285.	8.2	110
24	Recent development of the triboelectric properties of the polymer: A review. Advanced Materials Letters, 2018, 9, 462-470.	0.3	3
25	Inertia Based in-Vivo Triboelectric Nanogenerator for Self-Powering Implantable Electronic Devices. ECS Meeting Abstracts, 2018, , .	0.0	1
26	Highâ€Performance Piezoelectric, Pyroelectric, and Triboelectric Nanogenerators Based on P(VDFâ€TrFE) with Controlled Crystallinity and Dipole Alignment. Advanced Functional Materials, 2017, 27, 1700702.	7.8	149
27	Research Update: Nanogenerators for self-powered autonomous wireless sensors. APL Materials, 2017, 5, .	2.2	43
28	Highâ€Performance Triboelectric Nanogenerators Based on Solid Polymer Electrolytes with Asymmetric Pairing of Ions. Advanced Energy Materials, 2017, 7, 1700289.	10.2	129
29	Energy Harvesting: Highâ€Performance Piezoelectric, Pyroelectric, and Triboelectric Nanogenerators Based on P(VDFâ€TrFE) with Controlled Crystallinity and Dipole Alignment (Adv. Funct. Mater. 22/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
30	Graphene Tribotronics: Graphene Tribotronics for Electronic Skin and Touch Screen Applications (Adv. Mater. 1/2017). Advanced Materials, 2017, 29, .	11.1	3
31	Reliable Piezoelectricity in Bilayer WSe ₂ for Piezoelectric Nanogenerators. Advanced Materials, 2017, 29, 1606667.	11.1	158
32	Graphene Tribotronics for Electronic Skin and Touch Screen Applications. Advanced Materials, 2017, 29, 1603544.	11.1	214
33	Boosting Powerâ€Generating Performance of Triboelectric Nanogenerators via Artificial Control of Ferroelectric Polarization and Dielectric Properties. Advanced Energy Materials, 2017, 7, 1600988.	10.2	282
34	Triboelectrification-Induced Large Electric Power Generation from a Single Moving Droplet on Graphene/Polytetrafluoroethylene. ACS Nano, 2016, 10, 7297-7302.	7.3	183
35	Control of Skin Potential by Triboelectrification with Ferroelectric Polymers. Advanced Materials, 2015, 27, 5553-5558.	11.1	98
36	Thermally Induced Strain oupled Highly Stretchable and Sensitive Pyroelectric Nanogenerators. Advanced Energy Materials, 2015, 5, 1500704.	10.2	61

#	Article	IF	CITATIONS
37	Micropatterned P(VDFâ€TrFE) Filmâ€Based Piezoelectric Nanogenerators for Highly Sensitive Selfâ€Powered Pressure Sensors. Advanced Functional Materials, 2015, 25, 3203-3209.	7.8	334
38	Self-powered transparent flexible graphene microheaters. Nano Energy, 2015, 17, 356-365.	8.2	42