
Sanghoek Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3960702/publications.pdf Version: 2024-02-01

SANCHOEK KIM

#	Article	IF	CITATIONS
1	Wireless power transfer to deep-tissue microimplants. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7974-7979.	3.3	399
2	Review of Near-Field Wireless Power and Communication for Biomedical Applications. IEEE Access, 2017, 5, 21264-21285.	2.6	192
3	Implantable biomedical devices: Wireless powering and communication. IEEE Communications Magazine, 2012, 50, 152-159.	4.9	187
4	Midfield Wireless Powering for Implantable Systems. Proceedings of the IEEE, 2013, 101, 1369-1378.	16.4	178
5	Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors. Nature Communications, 2019, 10, 5205.	5.8	148
6	Wireless power transfer to a cardiac implant. Applied Physics Letters, 2012, 101, 073701.	1.5	116
7	Soft implantable drug delivery device integrated wirelessly with wearable devices to treat fatal seizures. Science Advances, 2021, 7, .	4.7	107
8	Wireless Power Transfer to Miniature Implants: Transmitter Optimization. IEEE Transactions on Antennas and Propagation, 2012, 60, 4838-4845.	3.1	105
9	Midfield Wireless Powering of Subwavelength Autonomous Devices. Physical Review Letters, 2013, 110, 203905.	2.9	92
10	Wireless Power Transfer and Telemetry for Implantable Bioelectronics. Advanced Healthcare Materials, 2021, 10, e2100614.	3.9	41
11	A Minimally Invasive Implantable Sensor for Continuous Wireless Glucose Monitoring Based on a Passive Resonator. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 124-128.	2.4	35
12	A DUAL-BAND ANTENNA FOR LTE-R AND 5G LOWER FREQUENCY OPERATIONS. Progress in Electromagnetics Research Letters, 2020, 88, 113-119.	0.4	31
13	Motion control of multiple autonomous ships to approach a target without being detected. International Journal of Advanced Robotic Systems, 2018, 15, 172988141876318.	1.3	24
14	Stealth path planning for a high speed torpedo-shaped autonomous underwater vehicle to approach a target ship. Cyber-Physical Systems, 2018, 4, 1-16.	1.6	20
15	Control of Power Distribution for Multiple Receivers in SIMO Wireless Power Transfer System. Journal of the Korean Institute of Electromagnetic Engineering and Science, 2018, 18, 221-230.	2.9	16
16	Antenna for IoT-Based Future Advanced (5G) Railway Communication With End-Fire Radiation. IEEE Internet of Things Journal, 2022, 9, 7036-7042.	5.5	15
17	Continuous Characterization of Permittivity over a Wide Bandwidth Using a Cavity Resonator. Journal of Electromagnetic Engineering and Science, 2020, 20, 39-44.	0.7	14
18	Wide-range robust wireless power transfer using heterogeneously coupled and flippable neutrals in parity-time symmetry. Science Advances, 2022, 8, .	4.7	13

Sanghoek Kim

#	Article	IF	CITATIONS
19	SHARK-FIN ANTENNA FOR RAILWAY COMMUNICATIONS IN LTE-R, LTE, AND LOWER 5G FREQUENCY BANDS. Progress in Electromagnetics Research, 2020, 167, 83-94.	1.6	11
20	Investigation of Single-Input Multiple-Output Wireless Power Transfer Systems Based on Optimization of Receiver Loads for Maximum Efficiencies. Journal of the Korean Institute of Electromagnetic Engineering and Science, 2018, 18, 145-153.	2.9	11
21	Design of Wideband Microwave Absorbers Using Reactive Salisbury Screens with Maximum Flat Reflection. Journal of the Korean Institute of Electromagnetic Engineering and Science, 2019, 19, 71-81.	2.9	10
22	Optimizations of source distribution in wireless power transmission for implantable devices. , 2010, , .		5
23	A microwave method to remotely assess the abdominal fat thickness. AIP Advances, 2021, 11, .	0.6	4
24	Robust Wireless Power Transfer with Minimal Field Exposure Using Parity-Time Symmetric Microwave Cavities. Physical Review Applied, 2021, 16, .	1.5	4
25	Embedded Structural-Durability Health-Monitoring System Integrated With Multisensors and a Wideband Antenna. IEEE Internet of Things Journal, 2022, 9, 17480-17487.	5.5	4
26	Batteryless, Miniaturized Implantable Glucose Sensor Using a Fluorescent Hydrogel. Sensors, 2021, 21, 8464.	2.1	4
27	Quality assurance of S-parameters and rational function models for transient simulations. , 2015, , .		3
28	Electromagnetic Analysis of Vertical Resistive Memory with a Sub-nm Thick Electrode. Nanomaterials, 2020, 10, 1634.	1.9	3
29	Optimal transmit dimension for wireless powering of miniature implants. , 2011, , .		2
30	Measuring abdominal fatness using principle of <i>Salisbury</i> screen. Electronics Letters, 2017, 53, 908-910.	0.5	2
31	Electromagnetic Modeling of Human Body Using High Performance Computing. Physics Procedia, 2017, 90, 107-114.	1.2	2
32	NON-COIL, OPTIMAL SOURCES FOR WIRELESS POWERING OF SUB-MILLIMETER IMPLANTABLE DEVICES. Progress in Electromagnetics Research, 2017, 158, 99-108.	1.6	2
33	A transistor based on 2D material and silicon junction. Journal of the Korean Physical Society, 2017, 71, 92-100.	0.3	1
34	Wireless powering of miniaturized neurostimulator. , 2017, , .		0
35	Power Link Optimization for a Neurostimulator in Nasal Cavity. International Journal of Antennas and Propagation, 2017, 2017, 1-6.	0.7	0
36	Expressions for Resonant Frequency of Wirelessly Accessible Planar Mirrored-Coil Sensor in Biomedicine. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 556-564.	2.9	0

#	Article	IF	CITATIONS
37	VARIATION OF THE SHAPE PARAMETER OF K-DISTRIBUTION FOR SEA CLUTTER WITH THE SPATIAL CORRELATION OF SEA SURFACE. Progress in Electromagnetics Research Letters, 2020, 92, 25-30.	0.4	ο