Yoshiaki Ukita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3960238/publications.pdf Version: 2024-02-01

Υσεμιλεί Πειτλ

#	Article	IF	CITATIONS
1	Automatic microfluidic enzyme-linked immunosorbent assay based on CLOCK-controlled autonomous centrifugal microfluidics. Sensors and Actuators B: Chemical, 2018, 261, 264-270.	7.8	30
2	Stacked centrifugal microfluidic device with three-dimensional microchannel networks and multifunctional capillary bundle structures for immunoassay. Sensors and Actuators B: Chemical, 2012, 166-167, 898-906.	7.8	25
3	Comprehensive single-cell transcriptome analysis reveals heterogeneity in endometrioid adenocarcinoma tissues. Scientific Reports, 2017, 7, 14225.	3.3	23
4	Development of high sensitive liquid electrode plasma – Atomic emission spectrometry (LEP-AES) integrated with solid phase pre-concentration. Microelectronic Engineering, 2013, 111, 343-347.	2.4	21
5	Adoption of reinforcement learning for the intelligent control of a microfluidic peristaltic pump. Biomicrofluidics, 2021, 15, 034101.	2.4	17
6	Water-clock-based autonomous flow sequencing in steadily rotating centrifugal microfluidic device. Sensors and Actuators B: Chemical, 2015, 220, 180-183.	7.8	16
7	A new stroboscopic technique for the observation of microscale fluorescent objects on a spinning platform in centrifugal microfluidics. Microfluidics and Nanofluidics, 2015, 18, 245-252.	2.2	16
8	Control of secondary flow in concentrically traveling flow on centrifugal microfluidics. Microfluidics and Nanofluidics, 2013, 15, 829-837.	2.2	11
9	Autonomous and complex flow control involving multistep injection and liquid replacement in a reaction chamber on steadily rotating centrifugal microfluidic devices. RSC Advances, 2017, 7, 35869-35874.	3.6	11
10	DOCK11 and DENND2A play pivotal roles in the maintenance of hepatitis B virus in host cells. PLoS ONE, 2021, 16, e0246313.	2.5	8
11	Density-gradient-assisted centrifugal microfluidics: an approach to continuous-mode particle separation. Biomedical Microdevices, 2017, 19, 24.	2.8	7
12	A lab in a bento box: an autonomous centrifugal microfluidic system for an enzyme-linked immunosorbent assay. Analytical Methods, 2020, 12, 4858-4866.	2.7	7
13	Integration of reinforcement learning to realize functional variability of microfluidic systems. Biomicrofluidics, 2022, 16, 024106.	2.4	5
14	Development of the automated gold-linked electrochemical immunoassay system for blood monitoring. Microsystem Technologies, 2014, 20, 273-279.	2.0	3
15	Dynamic Measurement Method for Bio-molecular Interactions by Using Centrifugal Force. Analytical Sciences, 2019, 35, 1123-1127.	1.6	1
16	Force analysis method of single-molecule interaction using centrifugal force. Japanese Journal of Applied Physics, 2019, 58, SIIC03.	1.5	1
17	Reflow process using wax for fabricating curved shaped molds of PDMS microchannels and chambers. Micro and Nano Engineering, 2020, 8, 100055.	2.9	1
18	Proposal of micro plasma extraction device by autonomous trigger control. Electronics and Communications in Japan, 2020, 103, 29-35.	0.5	0

#	Article	IF	CITATIONS
19	Development of a Double Side Patterning Autonomous Centrifugal Microfluidic Dispenser and Evaluation of Stability. IEEJ Transactions on Electronics, Information and Systems, 2020, 140, 457-464.	0.2	Ο