
## Chelcy R Ford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3959865/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Interâ€Basin Transfers Extend the Benefits of Water From Forests to Population Centers Across the Conterminous U.S Water Resources Research, 2022, 58, .                                                      | 1.7 | 8         |
| 2  | Removing riparian Rhododendron maximum in post-Tsuga canadensis riparian forests does not<br>degrade water quality in southern Appalachian streams. Science of the Total Environment, 2021, 761,<br>143270.   | 3.9 | 1         |
| 3  | Time lags: insights from the U.S. Long Term Ecological Research Network. Ecosphere, 2021, 12, e03431.                                                                                                         | 1.0 | 16        |
| 4  | The Coweeta Hydrologic Laboratory and the Coweeta <scp>Longâ€Term Ecological Research</scp><br>Project. Hydrological Processes, 2021, 35, e14302.                                                             | 1.1 | 4         |
| 5  | Forested lands dominate drinking water supply in the conterminous United States. Environmental<br>Research Letters, 2021, 16, 084008.                                                                         | 2.2 | 34        |
| 6  | Soil Moisture Responses to Rainfall: Implications for Runoff Generation. Water Resources Research, 2021, 57, e2020WR028827.                                                                                   | 1.7 | 38        |
| 7  | Effects of Rhododendron removal on soil bacterial and fungal communities in southern Appalachian<br>forests. Forest Ecology and Management, 2021, 496, 119398.                                                | 1.4 | 3         |
| 8  | An evaluation of ECOSTRESS products of a temperate montane humid forest in a complex terrain environment. Remote Sensing of Environment, 2021, 265, 112662.                                                   | 4.6 | 18        |
| 9  | The long-term case for partial-cutting over clear-cutting in the southern Appalachians USA. New Forests, 2020, 51, 273-295.                                                                                   | 0.7 | 8         |
| 10 | Climate Change May Increase the Drought Stress of Mesophytic Trees Downslope With Ongoing<br>Forest Mesophication Under a History of Fire Suppression. Frontiers in Forests and Global Change,<br>2020, 3, .  | 1.0 | 10        |
| 11 | Nonâ€linear quickflow response as indicators of runoff generation mechanisms. Hydrological<br>Processes, 2020, 34, 2949-2964.                                                                                 | 1.1 | 20        |
| 12 | An Expanded Investigation of Atmospheric Rivers in the Southern Appalachian Mountains and Their<br>Connection to Landslides. Atmosphere, 2019, 10, 71.                                                        | 1.0 | 16        |
| 13 | Drought sensitivity of an N 2 â€fixing tree may slow temperate deciduous forest recovery from disturbance. Ecology, 2019, 100, e02862.                                                                        | 1.5 | 16        |
| 14 | The Effects of Off-Highway Vehicle Trails and Use on Stream Water Quality in the North Fork of the Broad River. Transactions of the ASABE, 2019, 62, 539-548.                                                 | 1.1 | 2         |
| 15 | Warmer temperatures reduce net carbon uptake, but do not affect water use, in a mature southern<br>Appalachian forest. Agricultural and Forest Meteorology, 2018, 252, 269-282.                               | 1.9 | 48        |
| 16 | Forests, shrubs, and terrain: topâ€down and bottomâ€up controls on forest structure. Ecosphere, 2018, 9,<br>e02185.                                                                                           | 1.0 | 21        |
| 17 | Total C and N Pools and Fluxes Vary with Time, Soil Temperature, and Moisture Along an Elevation,<br>Precipitation, and Vegetation Gradient in Southern Appalachian Forests. Ecosystems, 2018, 21, 1623-1638. | 1.6 | 21        |
| 18 | Unexpected ecological advances made possible by longâ€ŧerm data: A Coweeta example. Wiley<br>Interdisciplinary Reviews: Water, 2018, 5, e1273.                                                                | 2.8 | 9         |

CHELCY R FORD

| #  | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Topography may mitigate drought effects on vegetation along a hillslope gradient. Ecohydrology, 2018, 11, e1825.                                                                                                                                                          | 1.1 | 51        |
| 20 | The Relative Influence of Storm and Landscape Characteristics on Shallow Groundwater Responses in Forested Headwater Catchments. Water Resources Research, 2018, 54, 9883-9900.                                                                                           | 1.7 | 13        |
| 21 | Herbaceous-layer diversity and tree seedling recruitment are enhanced following Rhododendron maximum shrub removal. Forest Ecology and Management, 2018, 430, 403-412.                                                                                                    | 1.4 | 11        |
| 22 | Soil microbial response to Rhododendron understory removal in southern Appalachian forests:<br>Effects on extracellular enzymes. Soil Biology and Biochemistry, 2018, 127, 50-59.                                                                                         | 4.2 | 29        |
| 23 | What Goes Up Must Come Down: Integrating Air and Water Quality Monitoring for Nutrients.<br>Environmental Science & Technology, 2018, 52, 11441-11448.                                                                                                                    | 4.6 | 12        |
| 24 | Tolerance or avoidance: drought frequency determines the response of an N <sub>2</sub> â€fixing tree.<br>New Phytologist, 2017, 215, 434-442.                                                                                                                             | 3.5 | 32        |
| 25 | Elevated light levels reduce hemlock woolly adelgid infestation and improve carbon balance of infested eastern hemlock seedlings. Forest Ecology and Management, 2017, 385, 150-160.                                                                                      | 1.4 | 27        |
| 26 | Water yield following forest–grass–forest transitions. Hydrology and Earth System Sciences, 2017,<br>21, 981-997.                                                                                                                                                         | 1.9 | 27        |
| 27 | Drought limitations to leafâ€level gas exchange: results from a model linking stomatal optimization<br>and cohesion–tension theory. Plant, Cell and Environment, 2016, 39, 583-596.                                                                                       | 2.8 | 74        |
| 28 | Cold air drainage flows subsidize montane valley ecosystem productivity. Global Change Biology,<br>2016, 22, 4014-4027.                                                                                                                                                   | 4.2 | 24        |
| 29 | Declining water yield from forested mountain watersheds in response to climate change and forest mesophication. Global Change Biology, 2016, 22, 2997-3012.                                                                                                               | 4.2 | 97        |
| 30 | Ecohydrological implications of drought for forests in the United States. Forest Ecology and Management, 2016, 380, 335-345.                                                                                                                                              | 1.4 | 67        |
| 31 | Frequency and Magnitude of Selected Historical Landslide Events in the Southern Appalachian<br>Highlands of North Carolina and Virginia: Relationships to Rainfall, Geological and Ecohydrological<br>Controls, and Effects. Managing Forest Ecosystems, 2016, , 203-262. | 0.4 | 9         |
| 32 | Influence of Forest Disturbance on Stable Nitrogen Isotope Ratios in Soil and Vegetation Profiles. Soil<br>Science Society of America Journal, 2015, 79, 1470-1481.                                                                                                       | 1.2 | 11        |
| 33 | Forest tree growth response to hydroclimate variability in the southern Appalachians. Global Change<br>Biology, 2015, 21, 4627-4641.                                                                                                                                      | 4.2 | 90        |
| 34 | Potential Implications for Expansion of Freeze-Tolerant <i>Eucalyptus</i> Plantations on Water<br>Resources in the Southern United States. Forest Science, 2015, 61, 509-521.                                                                                             | 0.5 | 10        |
| 35 | Simulating vegetation controls on hurricaneâ€induced shallow landslides with a distributed ecohydrological model. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 361-378.                                                                                  | 1.3 | 36        |
| 36 | Changes to southern Appalachian water yield and stormflow after loss of a foundation species.<br>Ecohydrology, 2015, 8, 518-528.                                                                                                                                          | 1.1 | 37        |

CHELCY R FORD

| #  | Article                                                                                                                                                                                      | IF        | CITATIONS     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|
| 37 | Changing forest water yields in response to climate warming: results from longâ€term experimental<br>watershed sites across North America. Global Change Biology, 2014, 20, 3191-3208.       | 4.2       | 147           |
| 38 | Future climate and fire interactions in the southeastern region of the United States. Forest Ecology and Management, 2014, 327, 316-326.                                                     | 1.4       | 126           |
| 39 | Drought enhances symbiotic dinitrogen fixation and competitive ability of a temperate forest tree.<br>Oecologia, 2014, 174, 1117-1126.                                                       | 0.9       | 60            |
| 40 | Divergent phenological response to hydroclimate variability in forested mountain watersheds. Global<br>Change Biology, 2014, 20, 2580-2595.                                                  | 4.2       | 71            |
| 41 | Forest Processes. Advances in Global Change Research, 2014, , 25-54.                                                                                                                         | 1.6       | 3             |
| 42 | Future species composition will affect forest water use after loss of eastern hemlock from southern<br>Appalachian forests. Ecological Applications, 2013, 23, 777-790.                      | 1.8       | 65            |
| 43 | Managing Forest Water Quantity and Quality under Climate Change. , 2013, , 249-306.                                                                                                          |           | 12            |
| 44 | Long-term temperature and precipitation trends at the Coweeta Hydrologic Laboratory, Otto, North<br>Carolina, USA. Hydrology Research, 2012, 43, 890-901.                                    | 1.1       | 115           |
| 45 | Long- and short-term precipitation effects on soil CO2 efflux and total belowground carbon allocation. Agricultural and Forest Meteorology, 2012, 156, 54-64.                                | 1.9       | 24            |
| 46 | Forest dynamics following eastern hemlock mortality in the southern Appalachians. Oikos, 2012, 121, 523-536.                                                                                 | 1.2       | 108           |
| 47 | Early Successional Forest Habitats and Water Resources. Managing Forest Ecosystems, 2011, , 253-269.                                                                                         | 0.4       | 2             |
| 48 | Transient changes in transpiration, and stem and soil CO2 efflux in longleaf pine (Pinus palustris) Tj ETQq0 0 0                                                                             | rgBT/Qver | lock 10 Tf 50 |
| 49 | Quantifying structural and physiological controls on variation in canopy transpiration among planted pine and hardwood species in the southern Appalachians. Ecohydrology, 2011, 4, 183-195. | 1.1       | 106           |
| 50 | Forest ecohydrological research in the 21st century: what are the critical needs?. Ecohydrology, 2011,<br>4, 146-158.                                                                        | 1.1       | 110           |
| 51 | A general predictive model for estimating monthly ecosystem evapotranspiration. Ecohydrology, 2011,<br>4, 245-255.                                                                           | 1.1       | 195           |
| 52 | Can forest management be used to sustain water-based ecosystem services in the face of climate change?. , 2011, 21, 2049-2067.                                                               |           | 131           |
| 53 | Long-term effects of fire and fire-return interval on population structure and growth of longleaf pine (Pinus palustris). Canadian Journal of Forest Research, 2010, 40, 1410-1420.          | 0.8       | 26            |
| 54 | Hemlock Declines Rapidly with Hemlock Woolly Adelgid Infestation: Impacts on the Carbon Cycle of<br>Southern Appalachian Forests. Ecosystems, 2009, 12, 179-190.                             | 1.6       | 112           |

CHELCY R FORD

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The response of sap flow to pulses of rain in a temperate Australian woodland. Plant and Soil, 2008, 305, 121-130.                                                                               | 1.8 | 77        |
| 56 | Water table depth affects productivity, water use, and the response to nitrogen addition in a savanna system. Canadian Journal of Forest Research, 2008, 38, 2118-2127.                          | 0.8 | 40        |
| 57 | TSUGA CANADENSIS(L.) CARR. MORTALITY WILL IMPACT HYDROLOGIC PROCESSES IN SOUTHERN<br>APPALACHIAN FOREST ECOSYSTEMS. , 2007, 17, 1156-1167.                                                       |     | 131       |
| 58 | A comparison of sap flux-based evapotranspiration estimates with catchment-scale water balance.<br>Agricultural and Forest Meteorology, 2007, 145, 176-185.                                      | 1.9 | 160       |
| 59 | Loss of foundation species: consequences for the structure and dynamics of forested ecosystems.<br>Frontiers in Ecology and the Environment, 2005, 3, 479-486.                                   | 1.9 | 1,461     |
| 60 | Modeling canopy transpiration using time series analysis: A case study illustrating the effect of soil moisture deficit on Pinus taeda. Agricultural and Forest Meteorology, 2005, 130, 163-175. | 1.9 | 55        |
| 61 | Loss of Foundation Species: Consequences for the Structure and Dynamics of Forested Ecosystems.<br>Frontiers in Ecology and the Environment, 2005, 3, 479.                                       | 1.9 | 14        |
| 62 | Detecting forest stress and decline in response to increasing river flow in southwest Florida, USA.<br>Forest Ecology and Management, 2002, 160, 45-64.                                          | 1.4 | 20        |
| 63 | A framework for scaling symbiotic nitrogen fixation using the most widespread nitrogen fixer in eastern deciduous forests of the United States. Journal of Ecology, 0, , .                       | 1.9 | 8         |