Ana Maria Spohr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3959803/publications.pdf

Version: 2024-02-01

623734 580821 38 681 14 25 citations g-index h-index papers 38 38 38 817 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Immediate dentin sealing influences the fracture strength of ultrathin occlusal veneers made of a polymer-infiltrated ceramic network. Journal of the Mechanical Behavior of Biomedical Materials, 2022, , 105331.	3.1	O
2	Fracture load of <scp>CAD</scp> / <scp>CAM</scp> ultrathin occlusal veneers luted to enamel or dentin. Journal of Esthetic and Restorative Dentistry, 2021, 33, 516-521.	3.8	9
3	Fracture strength of teeth restored with milled ultrathin occlusal veneers made of polymer-infiltrated ceramic. Brazilian Dental Journal, 2021, 32, 105-113.	1.1	2
4	Interfacial Stress and Bond Strength of Bulk-Fill or Conventional Composite Resins to Dentin in Class II Restorations. Brazilian Dental Journal, 2020, 31, 532-539.	1.1	10
5	Effect of Cariogenic Challenge on the Degradation of Adhesive-Dentin Interfaces. Brazilian Dental Journal, 2020, 31, 179-185.	1.1	1
6	Effect of grape seed extract-containing phosphoric acid formulations on bonding to enamel and dentin. Brazilian Oral Research, 2019, 33, e098.	1.4	6
7	Marginal adaptation and microleakage of a bulk-fill composite resin photopolymerized with different techniques. Odontology / the Society of the Nippon Dental University, 2018, 106, 56-63.	1.9	29
8	Aesthetic Rehabilitation in Teeth with Wear from Bruxism and Acid Erosion. Open Dentistry Journal, 2018, 12, 486-493.	0.5	6
9	The effect of milling and postmilling procedures on the surface roughness of <scp>CAD/CAM</scp> materials. Journal of Esthetic and Restorative Dentistry, 2017, 29, 450-458.	3.8	48
10	Microtensile bond strength of CAD/CAM materials to dentin under different adhesive strategies. Brazilian Oral Research, 2017, 31, e109.	1.4	14
11	Bond Capability of Universal Adhesive Systems to Dentin in Self-etch Mode after Short-term Storage and Cyclic Loading. Open Dentistry Journal, 2017, 11, 276-283.	0.5	15
12	Relined fiberglass post: an ex vivo study of the resin cement thickness and dentin-resin interface. Brazilian Oral Research, 2016, 30, .	1.4	11
13	Bond Strength of a Novel One Bottle Multi-mode Adhesive to Human Dentin After Six Months of Storage. Open Dentistry Journal, 2016, 10, 268-277.	0.5	27
14	Different Strategies to Bond Bis-GMA-based Resin Cement to Zirconia. Journal of Adhesive Dentistry, 2016, 18, 239-46.	0.5	8
15	Clinical Evaluation of Indirect Composite Resin Restorations Cemented with Different Resin Cements. Journal of Adhesive Dentistry, 2016, 18, 59-67.	0.5	6
16	Influence of Nd:YAG laser on the durability of resin-dentin bonds. Journal of Laser Applications, 2015, 27, .	1.7	4
17	Fracture resistance of computer-aided design and computer-aided manufacturing ceramic crowns cemented on solid abutments. Journal of the American Dental Association, 2015, 146, 501-507.	1.5	13
18	Surface Roughness of Composite Resins after Simulated Toothbrushing with Different Dentifrices. Journal of International Oral Health, 2015, 7, 1-5.	0.3	6

#	Article	IF	CITATIONS
19	Does immediate dentin sealing influence the polymerization of impression materials?. European Journal of Dentistry, 2014, 08, 366-372.	1.7	15
20	The influence of postpouring time on the roughness, compressive strength, and diametric tensile strength of dental stone. Journal of Prosthetic Dentistry, 2014, 112, 1573-1577.	2.8	10
21	In vivo Study of the Accuracy of Dual-arch Impressions. Journal of International Oral Health, 2014, 6, 50-5.	0.3	6
22	Microhardness and roughness of enamel bleached with 10% carbamide peroxide and brushed with different toothpastes: an in situ study. Journal of International Oral Health, 2014, 6, 18-24.	0.3	5
23	Influence of resin cements on cuspal deflection and fracture load of endodontically-treated teeth restored with composite inlays. Acta Odontologica Scandinavica, 2013, 71, 664-670.	1.6	5
24	Assessment of the dimensions and surface characteristics of orthodontic wires and bracket slots. Dental Press Journal of Orthodontics, 2013, 18, 69-75.	0.9	11
25	Thickness of immediate dentin sealing materials and its effect on the fracture load of a reinforced all-ceramic crown. European Journal of Dentistry, 2013, 07, 474-483.	1.7	14
26	Effect of curing time on the bond strength of a bracket-bonding system cured with a light-emitting diode or plasma arc light. European Journal of Orthodontics, 2011, 33, 55-59.	2.4	31
27	Effect of the Nd:YAG and the Er:YAG Laser on the Adhesive–Dentin Interface: A Scanning Electron Microscopy Study. Photomedicine and Laser Surgery, 2010, 28, 195-200.	2.0	20
28	Degree of conversion and hardness of an orthodontic resin cured with a light-emitting diode and a quartz-tungsten-halogen light. European Journal of Orthodontics, 2010, 32, 83-86.	2.4	15
29	Evaluation of Bond Strength and Internal Adaptation Between the Dental Cavity and Adhesives Applied in One and Two Layers. Operative Dentistry, 2010, 35, 69-76.	1.2	7
30	The influence of the Nd:YAG laser bleaching on physical and mechanical properties of the dental enamel. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 90B, 388-395.	3.4	30
31	Surface Modification of In-Ceram Zirconia Ceramic by Nd:YAG Laser, Rocatec System, or Aluminum Oxide Sandblasting and Its Bond Strength to a Resin Cement. Photomedicine and Laser Surgery, 2008, 26, 203-208.	2.0	99
32	Surface Roughness of Auto Polymerized Acrylic Resin According to Different Manipulation and Polishing Methods. Angle Orthodontist, 2008, 78, 931-934.	2.4	15
33	Development of a device to measure bracket debonding force in vivo. European Journal of Orthodontics, 2007, 29, 564-570.	2.4	12
34	Uv–vis spectrophotometric direct transmittance analysis of composite resins. Dental Materials, 2007, 23, 724-730.	3.5	43
35	Nd:YAG Laser Influence on Microtensile Bond Strength of Different Adhesive Systems for Human Dentin. Photomedicine and Laser Surgery, 2006, 24, 730-734.	2.0	22
36	Micro-Tensile Bond Strength Between a Resin Cement and an Aluminous Ceramic Treated with Nd:YAG Laser, Rocatec System, or Aluminum Oxide Sandblasting. Photomedicine and Laser Surgery, 2005, 23, 543-548.	2.0	52

3

#	Article	IF	CITATIONS
37	Influence of surface conditions and silane agent on the bond of resin to IPS Empress 2 ceramic. International Journal of Prosthodontics, 2003, 16, 277-82.	1.7	54
38	Surface roughness of monolithic zirconia ceramic submitted to different polishing systems. Brazilian Journal of Oral Sciences, 0, 18, e191643.	0.1	0