
## Nikolay Chechenin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3959696/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Temperature-dependent magnetization reversal in exchange bias NiFe/IrMn/NiFe structures. Journal of<br>Magnetism and Magnetic Materials, 2019, 482, 370-375.                                                         | 2.3 | 2         |
| 2  | Inhomogeneous magnetic field influence on magnetic properties of NiFe/IrMn thin film structures.<br>Journal of Magnetism and Magnetic Materials, 2019, 475, 763-766.                                                 | 2.3 | 10        |
| 3  | Ozone functionalized CNT-based filters for high removal efficiency of benzene from aqueous solutions. Journal of Water Process Engineering, 2018, 25, 81-87.                                                         | 5.6 | 13        |
| 4  | He ion irradiation effects on multiwalled carbon nanotubes structure. European Physical Journal D, 2017, 71, 1.                                                                                                      | 1.3 | 17        |
| 5  | Functionalized carbon nanotubes based filters for chromium removal from aqueous solutions.<br>Water Science and Technology, 2017, 75, 1564-1571.                                                                     | 2.5 | 19        |
| 6  | Nuclear contribution into single-event upset in 3D on-board electronics at moderate energy cosmic proton impact. EPJ Web of Conferences, 2016, 117, 05006.                                                           | 0.3 | 1         |
| 7  | Erosion of carbon nanotube-based polymer nanocomposites exposed to oxygen plasma. Journal of<br>Surface Investigation, 2016, 10, 617-622.                                                                            | 0.5 | 5         |
| 8  | Exchange Bias and Coercivity Fields as a Function of the Antiferromagnetic Layer Thickness in bi- and<br>tri- layered thin-films Based on IrMn and NiFe. Physics Procedia, 2016, 82, 51-55.                          | 1.2 | 5         |
| 9  | Characterization of functionalized multiwalled carbon nanotubes and application as an effective filter for heavy metal removal from aqueous solutions. Chinese Journal of Chemical Engineering, 2016, 24, 1695-1702. | 3.5 | 24        |
| 10 | Removal of iron and manganese from aqueous solutions using carbon nanotube filters. Water<br>Science and Technology: Water Supply, 2016, 16, 347-353.                                                                | 2.1 | 20        |
| 11 | Morphological and structural modifications of multiwalled carbon nanotubes by electron beam irradiation. Materials Research Express, 2016, 3, 105013.                                                                | 1.6 | 12        |
| 12 | Development of methods for calculating basic features of the nuclear contribution to single event<br>upsets under the effect of protons of moderately high energy. Physics of Atomic Nuclei, 2015, 78,<br>890-894.   | 0.4 | 2         |
| 13 | Dependence of the Exchange Bias on the Thickness of Antiferromagnetic Layer in the Trilayered<br>NiFe/IrMn/NiFe Thin-films. Physics Procedia, 2015, 75, 1066-1071.                                                   | 1.2 | 4         |
| 14 | Space radiation environment prediction for VLSI microelectronics devices onboard a LEO satellite using OMERE-TRAD software. Advances in Space Research, 2015, 56, 314-324.                                           | 2.6 | 16        |
| 15 | Dependence of Exchange Bias Field on Thickness of Antiferromagnetic Layer in NiFe/IrMn Structures.<br>Acta Physica Polonica A, 2015, 127, 555-557.                                                                   | 0.5 | 6         |
| 16 | Tungsten fragmentation in nuclear reactions induced by high-energy cosmic-ray protons. Physics of<br>Atomic Nuclei, 2015, 78, 159-166.                                                                               | 0.4 | 3         |
| 17 | Asymmetry of Magnetization Reversal of Pinned Layer in NiFe/Cu/NiFe/IrMn Spin-Valve Structure.<br>Journal of Superconductivity and Novel Magnetism, 2014, 27, 1547-1552.                                             | 1.8 | 7         |
| 18 | Influence of surface roughness and deposition order on exchange bias in bilayer structures<br>NiFe/IrMn. EPJ Web of Conferences, 2014, 75, 05010.                                                                    | 0.3 | 2         |

NIKOLAY CHECHENIN

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Synthesis and electroconductivity of epoxy/aligned CNTs composites. Applied Surface Science, 2013, 275, 217-221.                                                                                      | 6.1 | 35        |
| 20 | Impact of high-energy cosmic-ray protons and ions on the elements of spacecraft on-board devices.<br>Journal of Surface Investigation, 2012, 6, 303-313.                                              | 0.5 | 10        |
| 21 | Formation of oriented rodlike nickel silicide precipitates during magnetron deposition of carbon and nickel on silicon. Journal of Surface Investigation, 2011, 5, 65-69.                             | 0.5 | 1         |
| 22 | Comparison of experimental data with predictions of various models for silicon and aluminum fragmentation under the effect of high-energy cosmic rays. Physics of Atomic Nuclei, 2011, 74, 1718-1724. | 0.4 | 1         |
| 23 | Magnetic anisotropy in IrMn/Co structures with an alternative sequence of deposition of antiferromagnetic and ferromagnetic layers. Physics of the Solid State, 2010, 52, 1701-1708.                  | 0.6 | 7         |
| 24 | On the quantification of unbound hydrogen in diamond-like carbon-based thin films. Scripta<br>Materialia, 2009, 61, 320-323.                                                                          | 5.2 | 6         |
| 25 | Exchange bias in the IrMn/Co structures with alternative sequences of antiferromagnetic and ferromagnetic layers. JETP Letters, 2009, 88, 602-606.                                                    | 1.4 | 7         |
| 26 | Silicon fragmentation under the effect of high-energy cosmic-ray protons. Physics of Atomic Nuclei, 2009, 72, 1767-1772.                                                                              | 0.4 | 5         |
| 27 | Recoil-nucleus spectra in the interaction of cosmic-ray protons with spacecraft electronics. Physics of Atomic Nuclei, 2008, 71, 1293-1297.                                                           | 0.4 | 7         |
| 28 | On the composition analysis of nc-TiC/a-C : H nanocomposite coatings. Journal Physics D: Applied<br>Physics, 2008, 41, 085402.                                                                        | 2.8 | 6         |
| 29 | Nonlinearities in composition dependence of structure parameters and magnetic properties of<br>nanocrystalline fcc/bcc-mixed Co–Ni–Fe thin films. Journal of Applied Physics, 2008, 103, 07E738.      | 2.5 | 6         |
| 30 | FCC/BCC competition and enhancement of saturation magnetization in nanocrystalline Co-Ni-Fe films.<br>JETP Letters, 2007, 85, 212-215.                                                                | 1.4 | 6         |
| 31 | Magnetic properties of thin Co–Fe–Ni films. Journal of Magnetism and Magnetic Materials, 2007, 316, 451-453.                                                                                          | 2.3 | 19        |
| 32 | lon-beam analysis of the structure and composition of nanocomposite nc-TiC/a-C:H coatings. Journal of Surface Investigation, 2007, 1, 674-678.                                                        | 0.5 | 2         |
| 33 | Determining the mass density of a hydrocarbon matrix in thin-film nanocomposites by ion-beam techniques. Technical Physics Letters, 2007, 33, 919-922.                                                | 0.7 | Ο         |
| 34 | Influence of stresses and magnetostriction on the soft magnetic behavior of metallic films. Journal of Magnetism and Magnetic Materials, 2006, 299, 219-224.                                          | 2.3 | 14        |
| 35 | Micromagnetism and high-frequency properties of soft magnetic films. Journal of Magnetism and<br>Magnetic Materials, 2006, 300, 198-201.                                                              | 2.3 | 7         |
| 36 | Variation of structure and magnetic properties with thickness of thin Co59Fe26Ni15 films. Journal of<br>Magnetism and Magnetic Materials, 2005, 290-291, 1539-1542.                                   | 2.3 | 16        |

NIKOLAY CHECHENIN

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Ultra-soft magnetic films: micromagnetism and high frequency properties. Microelectronic<br>Engineering, 2005, 81, 303-309.                                                                                      | 2.4 | 3         |
| 38 | Effect of internal stray fields on the high-frequency properties of magnetic thin films. Physics of the Solid State, 2004, 46, 479-483.                                                                          | 0.6 | 7         |
| 39 | On the formation of ultra-fine grained Fe-base alloys via phase transformations. Materials Science<br>& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 367,<br>176-184.   | 5.6 | 5         |
| 40 | Soft magnetism in nitrided Fe93Ni4Cr3 and Fe94Ni4Ti2 cold-rolled alloys. Journal of Magnetism and Magnetic Materials, 2003, 263, 47-56.                                                                          | 2.3 | 4         |
| 41 | Thermal stability of the in-plane magnetic anisotropy and the coercivity of nanocrystalline CoFeNi<br>films. Journal of Magnetism and Magnetic Materials, 2003, 266, 251-257.                                    | 2.3 | 18        |
| 42 | Effects of topography on the local variation in the magnetization of ultrasoft magnetic films: A<br>Lorentz microscopy study. Philosophical Magazine, 2003, 83, 2899-2913.                                       | 1.6 | 4         |
| 43 | Thermal stability of ultrasoft Fe–Zr–N films. Journal of Physics Condensed Matter, 2003, 15, 7663-7674.                                                                                                          | 1.8 | 11        |
| 44 | Ultrasoft Magnetic Films Investigated with Lorentz Tranmission Electron Microscopy and Electron<br>Holography. Microscopy and Microanalysis, 2002, 8, 274-287.                                                   | 0.4 | 9         |
| 45 | Relation between observed micromagnetic ripple and FMR width in ultrasoft magnetic films. IEEE<br>Transactions on Magnetics, 2002, 38, 3027-3029.                                                                | 2.1 | 11        |
| 46 | Controlling the induced anisotropy in soft magnetic films for high-frequency applications. IEEE<br>Transactions on Magnetics, 2002, 38, 3144-3146.                                                               | 2.1 | 14        |
| 47 | Structure and Soft Magnetic Properties of Fe?Zr?N Films. Physica Status Solidi A, 2002, 189, 833-836.                                                                                                            | 1.7 | 21        |
| 48 | Precipitate formation in low-temperature nitrided cold-rolled Fe94Ni4Ti2 and Fe93Ni4Cr3 films.<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33,<br>3075-3087. | 2.2 | 14        |
| 49 | Microstructure of nanocrystalline FeZr(N)-films and their soft magnetic properties. Journal of<br>Magnetism and Magnetic Materials, 2002, 242-245, 180-182.                                                      | 2.3 | 18        |
| 50 | Positron Annihilation in Gaseous Nitrided Cold-Rolled FeNiTi Films. Materials Science Forum, 2001, 363-365, 493-495.                                                                                             | 0.3 | 4         |
| 51 | TEM Study of Ti-N and Cr-N Precipitate Formation in Iron Alloys. Physica Status Solidi A, 2000, 177, 117-125.                                                                                                    | 1.7 | 13        |
| 52 | Low-Temperature Nitridation of Iron Layers in NH3-H2 Mixtures. Physica Status Solidi A, 2000, 177, 127-133.                                                                                                      | 1.7 | 18        |
| 53 | Anatolii Filippovich Tulinov is 75. Physics of Atomic Nuclei, 2000, 63, 918-919.                                                                                                                                 | 0.4 | 0         |
| 54 | Investigation of laser-induced defect formation in CdTe crystals by Rutherford backscattering.<br>Physics of the Solid State, 1998, 40, 187-189.                                                                 | 0.6 | 11        |

Nikolay Chechenin

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Nanoindentation of amorphous aluminum oxide films III. The influence of the substrate on the elastic properties. Thin Solid Films, 1997, 304, 70-77.                                                                                               | 1.8 | 45        |
| 56 | A â€~hydrostatic core' model of elastic deformations in an indented film/substrate system. Thin Solid<br>Films, 1997, 304, 78-84.                                                                                                                  | 1.8 | 9         |
| 57 | Nanoindentation of amorphous aluminum oxide films I. The influence of the substrate on the plastic properties. Thin Solid Films, 1995, 261, 219-227.                                                                                               | 1.8 | 102       |
| 58 | Nanoindentation of amorphous aluminum oxide films II. Critical parameters for the breakthrough and a membrane effect in thin hard films on soft substrates. Thin Solid Films, 1995, 261, 228-235.                                                  | 1.8 | 50        |
| 59 | The thermodynamic factor in interdiffusion: A strong effect in amorphous Ni-Zr. Acta Metallurgica Et<br>Materialia, 1995, 43, 551-558.                                                                                                             | 1.8 | 13        |
| 60 | Formation of low friction and wear-resistant carbon coatings on tool steel by 75 keV, high-dose carbon ion implantation. Surface and Coatings Technology, 1994, 65, 154-159.                                                                       | 4.8 | 14        |
| 61 | lon irradiation induced grain growth in nanocrystalline Fe and Fe (Zr). Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 179-180, 582-586.                                             | 5.6 | 18        |
| 62 | Temperature effects on nitrogen diffusion and hardness of aluminum surface implanted with nitrogen. Surface and Coatings Technology, 1994, 66, 334-339.                                                                                            | 4.8 | 12        |
| 63 | Measurements of self-diffusion of Ni and interdiffusion in thin-film amorphous Niî—,Zr using RBS.<br>Nuclear Instruments & Methods in Physics Research B, 1994, 85, 197-201.                                                                       | 1.4 | 2         |
| 64 | Diffusion in thin-film amorphous metallic alloys. Nuclear Instruments & Methods in Physics Research<br>B, 1994, 85, 206-215.                                                                                                                       | 1.4 | 5         |
| 65 | Lowered interdiffusivity in thin amorphous Ni-Zr films with large composition gradients. The<br>Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and<br>Magnetic Properties, 1994, 69, 1083-1091. | 0.6 | 6         |
| 66 | Influence of Pulsed Laser Energy Deposition on Transport Properties and Structure in Trilayer<br>Epitaxial (Y/Pr)Ba2Cu3O7—x/SrTiO3 Films. Physica Status Solidi A, 1993, 136, 107-111.                                                             | 1.7 | 0         |
| 67 | Damage and aluminum distributions in sic during ion implantation and annealing. Nuclear Instruments<br>& Methods in Physics Research B, 1992, 65, 341-344.                                                                                         | 1.4 | 48        |
| 68 | Channeling in RBa2Cu3O7 â^' x single crystals. Nuclear Instruments & Methods in Physics Research B,<br>1990, 48, 207-210.                                                                                                                          | 1.4 | 3         |
| 69 | A channeling study of ion-produced disorder in silicon carbide. Nuclear Instruments & Methods in<br>Physics Research B, 1990, 48, 235-239.                                                                                                         | 1.4 | 10        |
| 70 | Melting and Damage Production in Silicon Carbide under Pulsed Laser Irradiation. Physica Status<br>Solidi A, 1990, 121, 399-406.                                                                                                                   | 1.7 | 7         |
| 71 | Depth distribution analysis of martensitic transformations in Xe implanted austenitic stainless steel.<br>Nuclear Instruments & Methods in Physics Research B, 1989, 39, 573-577.                                                                  | 1.4 | 21        |
| 72 | Channeling in PrBa 2 Cu 3 O 7â^'x -single crystals. Physica C: Superconductivity and Its Applications, 1989, 162-164, 949-950.                                                                                                                     | 1.2 | 1         |

NIKOLAY CHECHENIN

| #  | ARTICLE                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Studies of Amorphous Layer Formation in SiC under Ga+ Bombardment. Physica Status Solidi A, 1989,<br>112, 707-714.                                                   | 1.7 | 0         |
| 74 | SiC amorphlzation as a result of Ga+ implantation. Nuclear Instruments & Methods in Physics<br>Research B, 1988, 33, 788-791.                                        | 1.4 | 5         |
| 75 | Channeling study of the orientational dependence of laser-induced damage in GaAs and GaP. Nuclear<br>Instruments & Methods in Physics Research B, 1988, 33, 844-847. | 1.4 | 2         |
| 76 | Channeling study of laser-induced damage in GaP. Nuclear Instruments & Methods in Physics Research<br>B, 1986, 13, 503-505.                                          | 1.4 | 2         |
| 77 | The location of substitutional foreign atoms in GaAs by asymmetry of backscattering yield near.<br>Radiation Effects, 1984, 83, 91-97.                               | 0.4 | 8         |
| 78 | Lifetime-effect relations in the blocking technique for a thick crystal. Radiation Effects, 1982, 66, 183-193.                                                       | 0.4 | 8         |
| 79 | Asymmetry of depth oscillations for ã€^110〉 channeling in GaP. Nuclear Instruments & Methods in Physics<br>Research, 1982, 194, 129-132.                             | 0.9 | 11        |
| 80 | Location of impurities in compounds by asymmetry of channeling dips. Applied Physics Letters, 1981, 39, 758-760.                                                     | 3.3 | 35        |
| 81 | Lifetimes of the nuclei formed by deuterons bombardment of 235U. Nuclear Instruments & Methods, 1980, 170, 145-149.                                                  | 1.2 | 1         |
| 82 | Decay times for second-chance fission of 239U studied by crystal blocking. Nuclear Physics A, 1979, 324, 39-52.                                                      | 1.5 | 7         |
| 83 | Lifetime measurements on the compound nucleus 236U by means of the shadow effect. Nuclear Physics                                                                    | 15  | 14        |