Andreas Wanninger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3959687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Frontiers in Zoology, 2010, 7, 29.	0.9	281
2	Chiton myogenesis: Perspectives for the development and evolution of larval and adult muscle systems in molluscs. Journal of Morphology, 2002, 251, 103-113.	0.6	109
3	Nervous and muscle system development in Phascolion strombus (Sipuncula). Development Genes and Evolution, 2005, 215, 509-518.	0.4	104
4	The evolution of molluscs. Biological Reviews, 2019, 94, 102-115.	4.7	104
5	Neurogenesis in the mossy chiton,Mopalia muscosa(gould) (polyplacophora): Evidence against molluscan metamerism. Journal of Morphology, 2002, 253, 109-117.	0.6	98
6	Segmental Mode of Neural Patterning in Sipuncula. Current Biology, 2008, 18, 1129-1132.	1.8	93
7	Shaping the Things to Come: Ontogeny of Lophotrochozoan Neuromuscular Systems and the Tetraneuralia Concept. Biological Bulletin, 2009, 216, 293-306.	0.7	92
8	The expression of an engrailed protein during embryonic shell formation of the tusk-shell, Antalis entalis (Mollusca, Scaphopoda). Evolution & Development, 2001, 3, 312-321.	1.1	88
9	Development of the musculature in the limpet Patella (Mollusca, Patellogastropoda). Development Genes and Evolution, 1999, 209, 226-238.	0.4	80
10	Anatomy of the serotonergic nervous system of an entoproct creepingâ€ŧype larva and its phylogenetic implications. Invertebrate Biology, 2007, 126, 268-278.	0.3	79
11	Molluscs. Current Biology, 2012, 22, R510-R514.	1.8	79
12	On the fine structure of the creeping larva of <i>Loxosomella murmanica</i> : additional evidence for a clade of Kamptozoa (Entoprocta) and Mollusca. Acta Zoologica, 2008, 89, 137-148.	0.6	67
13	Immunocytochemistry and metamorphic fate of the larval nervous system of Triphyllozoon mucronatum (Ectoprocta: Gymnolaemata: Cheilostomata). Zoomorphology, 2005, 124, 161-170.	0.4	59
14	The development of the serotonergic and FMRF-amidergic nervous system in Antalis entalis (Mollusca,) Tj ETQqO	0 0 rgBT /	Oyerlock 10
15	The role of MAPK signaling in patterning and establishing axial symmetry in the gastropod Haliotis asinina. Developmental Biology, 2007, 311, 200-212.	0.9	58
16	Key novelties in the evolution of the aquatic colonial phylum Bryozoa: evidence from soft body morphology. Biological Reviews, 2020, 95, 696-729.	4.7	58

17	Aplacophoran Mollusks Evolved from Ancestors with Polyplacophoran-like Features. Current Biology, 2013, 23, 2130-2134.	1.8	55

18Early development of the aplacophoran mollusc Chaetoderma. Acta Zoologica, 2007, 88, 231-247.0.654

ANDREAS WANNINGER

#	Article	IF	CITATIONS
19	Pygmy squids and giant brains: Mapping the complex cephalopod CNS by phalloidin staining of vibratome sections and whole-mount preparations. Journal of Neuroscience Methods, 2009, 179, 63-67.	1.3	52
20	Molluscan muscle systems in development and evolution*. Journal of Zoological Systematics and Evolutionary Research, 2000, 38, 157-163.	0.6	51
21	Muscle development inAntalis entalis (Mollusca, Scaphopoda) and its significance for scaphopod relationships. Journal of Morphology, 2002, 254, 53-64.	0.6	50
22	Larval neurogenesis in <i>Sabellaria alveolata</i> reveals plasticity in polychaete neural patterning. Evolution & Development, 2008, 10, 606-618.	1.1	50
23	Steps towards a centralized nervous system in basal bilaterians: Insights from neurogenesis of the acoel <i>Symsagittifera roscoffensis</i> . Development Growth and Differentiation, 2010, 52, 701-713.	0.6	50
24	Opsin evolution in the Ambulacraria. Marine Genomics, 2015, 24, 177-183.	0.4	50
25	FMRFamide gene and peptide expression during central nervous system development of the cephalopod mollusk, <i>ldiosepius notoides</i> . Evolution & Development, 2010, 12, 113-130.	1.1	49
26	Immunocytochemistry of the nervous system and the musculature of the chordoid larva ofSymbion pandora (Cycliophora). Journal of Morphology, 2005, 265, 237-243.	0.6	44
27	Morphology is dead ââ,¬â€œ long live morphology! Integrating MorphoEvoDevo into molecular EvoDevo and phylogenomics. Frontiers in Ecology and Evolution, 2015, 3, .	1.1	44
28	Mantle margin morphogenesis in Nodipecten nodosus (Mollusca: Bivalvia): new insights into the development and the roles of bivalve pallial folds. BMC Developmental Biology, 2015, 15, 22.	2.1	44
29	Myoanatomy of the marine tardigrade <i>Halobiotus crispae</i> (Eutardigrada: Hypsibiidae). Journal of Morphology, 2009, 270, 996-1013.	0.6	43
30	Myoanatomy and serotonergic nervous system of the ctenostome Hislopia malayensis: evolutionary trends in bodyplan patterning of ectoprocta. Frontiers in Zoology, 2011, 8, 11.	0.9	43
31	Unexpected co-linearity of Hox gene expression in an aculiferan mollusk. BMC Evolutionary Biology, 2015, 15, 151.	3.2	42
32	Expression of serotonin (5-HT) during CNS development of the cephalopod mollusk, Idiosepius notoides. Cell and Tissue Research, 2010, 342, 161-178.	1.5	41
33	Neuromuscular development in <i>Novocrania anomala</i> : evidence for the presence of serotonin and a spiralian″ike apical organ in lecithotrophic brachiopod larvae. Evolution & Development, 2010, 12, 16-24.	1.1	41
34	Comparative transcriptomics enlarges the toolkit of known developmental genes in mollusks. BMC Genomics, 2016, 17, 905.	1.2	41
35	Immunocytochemistry of the neuromuscular systems ofLoxosomella vivipara andL. parguerensis (Entoprocta: Loxosomatidae). Journal of Morphology, 2006, 267, 866-883.	0.6	40
36	Neural architecture of Galathowenia oculata Zach, 1923 (Oweniidae, Annelida). Frontiers in Zoology, 2016, 13, 5.	0.9	40

#	Article	IF	CITATIONS
37	The quagga mussel genome and the evolution of freshwater tolerance. DNA Research, 2019, 26, 411-422.	1.5	40
38	Myo-anatomy of juvenile and adult loxosomatid Entoprocta and the use of muscular body plans for phylogenetic inferences. Journal of Morphology, 2004, 261, 249-257.	0.6	39
39	Comparative lophotrochozoan neurogenesis and larval neuroanatomy: Recent advances from previously neglected taxa. Acta Biologica Hungarica, 2008, 59, 127-136.	0.7	39
40	Of tests, trochs, shells, and spicules: Development of the basal mollusk Wirenia argentea (Solenogastres) and its bearing on the evolution of trochozoan larval key features. Frontiers in Zoology, 2010, 7, 6.	0.9	37
41	Torsion in <i>Patella caerulea</i> (Mollusca, Patellogastropoda): ontogenetic process, timing, and mechanisms. Invertebrate Biology, 2000, 119, 177-187.	0.3	36
42	Immunocytochemical studies on the naupliar nervous system of Balanus improvisus (Crustacea,) Tj ETQq0 0 0 rg	gBT/Qverl	ock 10 Tf 50 5
43	The development of the musculature in the limpetPatellawith implications on its role in the process of ontogenetic torsion. Invertebrate Reproduction and Development, 1999, 36, 211-215.	0.3	34
44	Development of the nervous system in Phoronopsis harmeri (Lophotrochozoa, Phoronida) reveals both deuterostome- and trochozoan-like features. BMC Evolutionary Biology, 2012, 12, 121.	3.2	34
45	Hox and ParaHox gene expression in early body plan patterning of polyplacophoran mollusks. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2016, 326, 89-104.	0.6	34
46	Ancestral role of Pax2/5/8 in molluscan brain and multimodal sensory system development. BMC Evolutionary Biology, 2015, 15, 231.	3.2	33
47	Micro-CT in cephalopod research: Investigating the internal anatomy of a sepiolid squid using a non-destructive technique with special focus on the ganglionic system. Journal of Experimental Marine Biology and Ecology, 2013, 447, 140-148.	0.7	32
48	Myoanatomy and serotonergic nervous system of plumatellid and fredericellid phylactolaemata (lophotrochozoa, ectoprocta). Journal of Morphology, 2012, 273, 57-67.	0.6	31
49	The serotonin-lir nervous system of the Bryozoa (Lophotrochozoa): a general pattern in the Gymnolaemata and implications for lophophore evolution of the phylum. BMC Evolutionary Biology, 2015, 15, 223.	3.2	31
50	FMRFamide-like immunoreactivity in the central nervous system of the cephalopod mollusc, <i>Idiosepius notoides </i> . Acta Biologica Hungarica, 2008, 59, 111-116.	0.7	29
51	The nervous system of Paludicella articulata - first evidence of a neuroepithelium in a ctenostome ectoproct. Frontiers in Zoology, 2014, 11, 89.	0.9	29
52	Neurogenesis in directly and indirectly developing enteropneusts: of nets and cords. Organisms Diversity and Evolution, 2015, 15, 405-422.	0.7	29
53	Myogenesis in the basal bilaterian Symsagittifera roscoffensis (Acoela). Frontiers in Zoology, 2008, 5, 14.	0.9	28
54	Fine structure and immunocytochemistry of a new chemosensory system in the chiton larva (Mollusca: Polyplacophora). Journal of Morphology, 2002, 251, 210-218.	0.6	27

#	Article	IF	CITATIONS
55	Brain regionalization genes are co-opted into shell field patterning in Mollusca. Scientific Reports, 2017, 7, 5486.	1.6	27
56	Sipunculans and segmentation. Communicative and Integrative Biology, 2009, 2, 56-59.	0.6	26
57	Cellular and muscular growth patterns during sipunculan development. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2011, 316B, 227-240.	0.6	26
58	The ParaHox gene Gsx patterns the apical organ and central nervous system but not the foregut in scaphopod and cephalopod mollusks. EvoDevo, 2015, 6, 41.	1.3	26
59	Morphology of the bryozoan Cinctipora elegans (Cyclostomata, Cinctiporidae) with first data on its sexual reproduction and the cyclostome neuro-muscular system. BMC Evolutionary Biology, 2018, 18, 92.	3.2	26
60	Ancient origins of arthropod moulting pathway components. ELife, 2019, 8, .	2.8	26
61	Immunocytochemical studies reveal novel neural structures in nemertean pilidium larvae and provide evidence for incorporation of larval components into the juvenile nervous system. Frontiers in Zoology, 2013, 10, 31.	0.9	25
62	POU genes are expressed during the formation of individual ganglia of the cephalopod central nervous system. EvoDevo, 2014, 5, 41.	1.3	25
63	Mollusca. , 2015, , 103-153.		25
64	Unity in diversity: a survey of muscular systems of ctenostome Gymnolaemata (Lophotrochozoa,) Tj ETQq0 0 0 r	gBT /Over 0.9	lock 10 Tf 50
65	Analysis of neurotransmitter distribution in brain development of benthic and pelagic octopod cephalopods. Journal of Morphology, 2012, 273, 776-790.	0.6	24
66	Development of the nervous system in Solenogastres (Mollusca) reveals putative ancestral spiralian features. EvoDevo, 2014, 5, 48.	1.3	24
67	Staggered Hox expression is more widespread among molluscs than previously appreciated. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181513.	1.2	24
68	Reconstruction of the neuromuscular system of the swimming-type larva of Loxosomella atkinsae (Entoprocta) as inferred by fluorescence labelling and confocal microscopy. Organisms Diversity and Evolution, 2008, 8, 325-335.	0.7	23
69	Extensive conservation of the proneuropeptide and peptide prohormone complement in mollusks. Scientific Reports, 2019, 9, 4846.	1.6	23
70	Neurogenesis of cephalic sensory organs of Aplysia californica. Cell and Tissue Research, 2007, 330, 361-379.	1.5	22
71	Neurogenesis suggests independent evolution of opercula in serpulid polychaetes. BMC Evolutionary Biology, 2009, 9, 270.	3.2	21
72	Comparative larval myogenesis and adult myoanatomy of the rhynchonelliform (articulate) brachiopods Argyrotheca cordata, A. cistellula, and Terebratalia transversa. Frontiers in Zoology, 2009, 6, 3.	0.9	21

ANDREAS WANNINGER

#	Article	IF	CITATIONS
73	Ancestral Role of Ecdysis-Related Neuropeptides in Animal Life Cycle Transitions. Current Biology, 2021, 31, 207-213.e4.	1.8	21
74	Homeobox gene expression in Brachiopoda: The role of Not and Cdx in bodyplan patterning, neurogenesis, and germ layer specification. Gene Expression Patterns, 2011, 11, 427-436.	0.3	20
75	Innervation of bivalve larval catch muscles by serotonergic and FMRF <scp>amidergic</scp> neurons. Acta Biologica Hungarica, 2012, 63, 221-229.	0.7	20
76	From complex to simple: myogenesis in an aplacophoran mollusk reveals key traits in aculiferan evolution. BMC Evolutionary Biology, 2015, 15, 201.	3.2	20
77	Myogenesis in <i>Aplysia californica</i> (Cooper, 1863) (Mollusca, Gastropoda, Opisthobranchia) with special focus on muscular remodeling during metamorphosis. Journal of Morphology, 2008, 269, 776-789.	0.6	19
78	Towards a ground pattern reconstruction of bivalve nervous systems: neurogenesis in the zebra mussel Dreissena polymorpha. Organisms Diversity and Evolution, 2018, 18, 101-114.	0.7	19
79	Threeâ€dimensional reconstruction of the musculature of various life cycle stages of the cycliophoran <i>Symbion americanus</i> . Journal of Morphology, 2009, 270, 257-270.	0.6	18
80	Cycliophoran Dwarf Males Break the Rule: High Complexity with Low Cell Numbers. Biological Bulletin, 2009, 217, 2-5.	0.7	18
81	The nervous system of the basal mollusk <i>Wirenia argentea</i> (Solenogastres): a study employing immunocytochemical and 3D reconstruction techniques. Marine Biology Research, 2008, 4, 290-303.	0.3	16
82	Three-dimensional reconstruction of the naupliar musculature and a scanning electron microscopy atlas of nauplius development of Balanus improvisus (Crustacea: Cirripedia: Thoracica). Arthropod Structure and Development, 2009, 38, 135-145.	0.8	16
83	Metamorphosis in Craniiformea revisited: Novocrania anomala shows delayed development of the ventral valve. Zoomorphology, 2013, 132, 379-387.	0.4	16
84	Integrative analysis of polychaete ontogeny: cell proliferation patterns and myogenesis in trochophore larvae of <i>Sabellaria alveolata</i> . Evolution & Development, 2010, 12, 5-15.	1.1	15
85	Evolution of invertebrate nervous systems: the Chaetognatha as a case study. Acta Zoologica, 2010, 91, 35-43.	0.6	15
86	Developmental dynamics of myogenesis in the shipworm Lyrodus pedicellatus (Mollusca: Bivalvia). Frontiers in Zoology, 2014, 11, 90.	0.9	15
87	Neuronal patterning of the tubular collar cord is highly conserved among enteropneusts but dissimilar to the chordate neural tube. Scientific Reports, 2017, 7, 7003.	1.6	15
88	Reconstructing the muscular ground pattern of phylactolaemate bryozoans: first data from gelatinous representatives. BMC Evolutionary Biology, 2017, 17, 225.	3.2	15
89	Life in a tube: morphology of the ctenostome bryozoan Hypophorella expansa. Zoological Letters, 2019, 5, 28.	0.7	15
90	The protonephridial system of the tusk shell, Antalis entalis (Mollusca, Scaphopoda). Zoomorphology, 2001, 121, 19-26.	0.4	14

ANDREAS WANNINGER

#	Article	IF	CITATIONS
91	Trapped in freshwater: the internal anatomy of the entoproct Loxosomatoides sirindhornae. Frontiers in Zoology, 2010, 7, 7.	0.9	13
92	Molecular architecture of muscles in an acoel and its evolutionary implications. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2011, 316B, 427-439.	0.6	13
93	Spiral cleavage and early embryology of a loxosomatid entoproct and the usefulness of spiralian apical cross patterns for phylogenetic inferences. BMC Developmental Biology, 2012, 12, 11.	2.1	13
94	Development of the pallial eye in Nodipecten nodosus (Mollusca: Bivalvia): insights into early visual performance in scallops. Zoomorphology, 2015, 134, 403-415.	0.4	13
95	Morphology and life cycle of an epiphytic pherusellid ctenostome bryozoan from the Mediterranean Sea. Organisms Diversity and Evolution, 2020, 20, 417-437.	0.7	13
96	Neuromuscular development in Patellogastropoda (Mollusca: Gastropoda) and its importance for reconstructing ancestral gastropod bodyplan features. Journal of Zoological Systematics and Evolutionary Research, 2016, 54, 22-39.	0.6	12
97	Ancestral and novel roles of Pax family genes in mollusks. BMC Evolutionary Biology, 2017, 17, 81.	3.2	12
98	Neuroanatomy of <i>Hyalinella punctata</i> : Common patterns and new characters in phylactolaemate bryozoans. Journal of Morphology, 2018, 279, 242-258.	0.6	12
99	Insights into the organization of plumatellid larvae (lophotrochozoa, Bryozoa) by means of 3Dâ€imaging and confocal microscopy. Journal of Morphology, 2015, 276, 109-120.	0.6	11
100	Molluscan Evolutionary Development. , 2008, , 427-445.		10
101	Comparative myoanatomy of cycliophoran life cycle stages. Journal of Morphology, 2010, 271, 596-611.	0.6	10
102	Cell Proliferation Pattern and <i>Twist</i> Expression in an Aplacophoran Mollusk Argue Against Segmented Ancestry of Mollusca. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2016, 326, 422-436.	0.6	10
103	Single-Cell RNA Sequencing Atlas From a Bivalve Larva Enhances Classical Cell Lineage Studies. Frontiers in Ecology and Evolution, 2022, 9, .	1.1	10
104	External morphology of the cycliophoran dwarf male: a comparative study of Symbion pandora and S. americanus. Helgoland Marine Research, 2010, 64, 257-262.	1.3	9
105	Myogenesis in two polyclad platyhelminths with indirect development, <i>Pseudoceros canadensis</i> and <i>Stylostomum sanjuania</i> . Evolution & Development, 2010, 12, 210-221.	1.1	9
106	Inferring muscular ground patterns in Bivalvia: Myogenesis in the scallop Nodipecten nodosus. Frontiers in Zoology, 2015, 12, 34.	0.9	9
107	Muscular anatomy of an entoproct creeping-type larva reveals extraordinary high complexity and potential shared characters with mollusks. BMC Evolutionary Biology, 2015, 15, 130.	3.2	9
108	Non-collinear Hox gene expression in bivalves and the evolution of morphological novelties in mollusks. Scientific Reports, 2021, 11, 3575.	1.6	9

#	Article	IF	CITATIONS
109	The VD1/RPD2 α1-neuropeptide is highly expressed in the brain of cephalopod mollusks. Cell and Tissue Research, 2012, 348, 439-452.	1.5	8
110	Anatomy of the pallial tentacular organs of the scallop Nodipecten nodosus (Linnaeus, 1758) (Bivalvia:) Tj ETQo	0 0 0 _{0 f} gBT	/Oyerlock 10

111	Serotonin immunoreactivity in the nervous system of the Pandora larva, the Prometheus larva, and the dwarf male of Symbion americanus (Cycliophora). Zoologischer Anzeiger, 2010, 249, 1-12.	0.4	7
112	Capitellid connections: contributions from neuromuscular development of the maldanid polychaete Axiothella rubrocincta (Annelida). BMC Evolutionary Biology, 2010, 10, 168.	3.2	7
113	A mating plug in a squid? Sneaker spermatophores can block the female sperm-storage organ in Doryteuthis plei. Zoology, 2018, 130, 47-56.	0.6	7
114	Comparative Single-Cell Transcriptomics Reveals Novel Genes Involved in Bivalve Embryonic Shell Formation and Questions Ontogenetic Homology of Molluscan Shell Types. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	7
115	Preliminary results on the anatomy of the larval musculature ofBalanus improvisus(Darwin, 1854) (Crustacea: Cirripedia: Thecostraca) using phalloidin staining in combination with confocal laserscanning microscopy. Invertebrate Reproduction and Development, 2006, 49, 207-212.	0.3	6
116	Evolutionary Developmental Biology of Invertebrates 4. , 2015, , .		6
117	A putative species complex in the S ea of J apan revealed by DNA sequence data: a study on L ottia cf.Â kogamogai (G astropoda: P atellogastropoda). Journal of Zoological Systematics and Evolutionary Research, 2016, 54, 177-181.	0.6	6
118	Reproductive biology, embryonic development and matrotrophy in the phylactolaemate bryozoan Plumatella casmiana. Organisms Diversity and Evolution, 2021, 21, 467-490.	0.7	6
119	Expression of synapsin and coâ€localization with serotonin and RFamideâ€like immunoreactivity in the nervous system of the chordoid larva of <i>Symbion pandora</i> (Cycliophora). Invertebrate Biology, 2010, 129, 17-26.	0.3	5
120	Inter- and intraspecific plasticity in distribution patterns of immunoreactive compounds in actinotroch larvae of Phoronida (Lophotrochozoa). Journal of Zoological Systematics and Evolutionary Research, 2014, 52, 1-14.	0.6	5
121	Twenty years into the "new animal phylogenyâ€: Changes and challenges. Organisms Diversity and Evolution, 2016, 16, 315-318.	0.7	5
122	The life of the freshwater bryozoan Stephanella hina (Bryozoa, Phylactolaemata)—a crucial key to elucidating bryozoan evolution. Zoological Letters, 2016, 2, 25.	0.7	5
123	Expression of <i>six3</i> and <i>otx</i> in Solenogastres (Mollusca) supports an ancestral role in bilaterian anteriorâ€posterior axis patterning. Evolution & Development, 2018, 20, 17-28.	1.1	5
124	Mollusca: Bivalvia. , 2015, , 190-195.		5
125	Novel and Conserved Features of the Hox Cluster of Entoprocta (Kamptozoa). Journal of Phylogenetics & Evolutionary Biology, 2018, 06, .	0.2	4
126	Ecdysisâ€related neuropeptide expression and metamorphosis in a nonâ€ecdysozoan bilaterian. Evolution; International Journal of Organic Evolution, 2021, 75, 2237-2250.	1.1	4

#	Article	IF	CITATIONS
127	Entoprocta. , 2015, , 89-101.		3
128	Midbody-Localized Aquaporin Mediates Intercellular Lumen Expansion During Early Cleavage of an Invasive Freshwater Bivalve. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3
129	A mosaic of conserved and novel modes of gene expression and morphogenesis in mesoderm and muscle formation of a larval bivalve. Organisms Diversity and Evolution, 2022, 22, 893-913.	0.7	3
130	Complete mitochondrial genomes of two scaphopod molluscs. Mitochondrial DNA Part B: Resources, 2019, 4, 3161-3162.	0.2	1
131	HES and Mox genes are expressed during early mesoderm formation in a mollusk with putative ancestral features. Scientific Reports, 2021, 11, 18030.	1.6	1
132	Methods in Brain Development of Molluscs. Methods in Molecular Biology, 2014, 1082, 117-125.	0.4	0
133	Methods in Brain Development of Molluscs. Methods in Molecular Biology, 2020, 2047, 311-324.	0.4	0