Xiaobing Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3959663/publications.pdf

Version: 2024-02-01

109137 106150 4,645 106 35 65 citations h-index g-index papers 106 106 106 3881 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Memristor with Agâ€Clusterâ€Doped TiO ₂ Films as Artificial Synapse for Neuroinspired Computing. Advanced Functional Materials, 2018, 28, 1705320.	7.8	318
2	Vacancyâ€Induced Synaptic Behavior in 2D WS ₂ Nanosheet–Based Memristor for Lowâ€Power Neuromorphic Computing. Small, 2019, 15, e1901423.	5.2	252
3	Selfâ€Assembled Networked PbS Distribution Quantum Dots for Resistive Switching and Artificial Synapse Performance Boost of Memristors. Advanced Materials, 2019, 31, e1805284.	11.1	221
4	Graphene Oxide Quantum Dots Based Memristors with Progressive Conduction Tuning for Artificial Synaptic Learning. Advanced Functional Materials, 2018, 28, 1803728.	7.8	218
5	The Rise of 2D Photothermal Materials beyond Graphene for Clean Water Production. Advanced Science, 2020, 7, 1902236.	5.6	206
6	The Future of Memristors: Materials Engineering and Neural Networks. Advanced Functional Materials, 2021, 31, 2006773.	7.8	187
7	A New Memristor with 2D Ti ₃ C ₂ T <i>>_x</i> MXene Flakes as an Artificial Bioâ€5ynapse. Small, 2019, 15, e1900107.	5.2	142
8	Current-induced magnetization switching in all-oxide heterostructures. Nature Nanotechnology, 2019, 14, 939-944.	15.6	139
9	Epitaxial Ferroelectric Hf _{0.5} Zr _{0.5} O ₂ Thin Films and Their Implementations in Memristors for Brainâ€nspired Computing. Advanced Functional Materials, 2018, 28, 1806037.	7.8	138
10	Robust Ag/ZrO ₂ /WS ₂ /Pt Memristor for Neuromorphic Computing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 48029-48038.	4.0	123
11	Control of Synaptic Plasticity Learning of Ferroelectric Tunnel Memristor by Nanoscale Interface Engineering. ACS Applied Materials & Samp; Interfaces, 2018, 10, 12862-12869.	4.0	109
12	Overview of Resistive Random Access Memory (RRAM): Materials, Filament Mechanisms, Performance Optimization, and Prospects. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900073.	1.2	109
13	Flexible Graphene Electrodes for Prolonged Dynamic ECG Monitoring. Sensors, 2016, 16, 1833.	2.1	105
14	Current status and prospects of memristors based on novel 2D materials. Materials Horizons, 2020, 7, 1495-1518.	6.4	101
15	Superior resistive switching memory and biological synapse properties based on a simple TiN/SiO ₂ /p-Si tunneling junction structure. Journal of Materials Chemistry C, 2017, 5, 2259-2267.	2.7	97
16	Continuously controllable photoconductance in freestanding BiFeO3 by the macroscopic flexoelectric effect. Nature Communications, 2020, 11, 2571.	5.8	93
17	Two-Dimensional Borophene: Properties, Fabrication, and Promising Applications. Research, 2020, 2020, 2624617.	2.8	93
18	Artificial Visual Perception Nervous System Based on Low-Dimensional Material Photoelectric Memristors. ACS Nano, 2021, 15, 17319-17326.	7.3	92

#	Article	IF	Citations
19	Flexible memristors as electronic synapses for neuro-inspired computation based on scotch tape-exfoliated mica substrates. Nano Research, 2018, 11, 1183-1192.	5.8	91
20	Ferroic tunnel junctions and their application in neuromorphic networks. Applied Physics Reviews, 2020, 7, .	5.5	91
21	Flexible Transparent Organic Artificial Synapse Based on the Tungsten/Egg Albumen/Indium Tin Oxide/Polyethylene Terephthalate Memristor. ACS Applied Materials & Interfaces, 2019, 11, 18654-18661.	4.0	77
22	Silk Flexible Electronics: From <i>Bombyx mori</i> Silk Ag Nanoclusters Hybrid Materials to Mesoscopic Memristors and Synaptic Emulators. Advanced Functional Materials, 2019, 29, 1904777.	7.8	71
23	A Pure 2Hâ€MoS ₂ Nanosheetâ€Based Memristor with Low Power Consumption and Linear Multilevel Storage for Artificial Synapse Emulator. Advanced Electronic Materials, 2020, 6, 1901342.	2.6	67
24	Highly improved performance in Zr _{0.5} Hf _{0.5} O ₂ films inserted with graphene oxide quantum dots layer for resistive switching non-volatile memory. Journal of Materials Chemistry C, 2017, 5, 11046-11052.	2.7	66
25	MXene Ti3C2 memristor for neuromorphic behavior and decimal arithmetic operation applications. Nano Energy, 2021, 79, 105453.	8.2	58
26	Designing carbon conductive filament memristor devices for memory and electronic synapse applications. Materials Horizons, 2020, 7, 1106-1114.	6.4	57
27	Artificial electronic synapse characteristics of a Ta/Ta2O5-x/Al2O3/InGaZnO4 memristor device on flexible stainless steel substrate. Applied Physics Letters, 2018, 113, .	1.5	51
28	Hf0.5Zr0.5O2-based ferroelectric memristor with multilevel storage potential and artificial synaptic plasticity. Science China Materials, 2021, 64, 727-738.	3.5	51
29	Advances in Memristor-Based Neural Networks. Frontiers in Nanotechnology, 2021, 3, .	2.4	51
30	An electronic synapse memristor device with conductance linearity using quantized conduction for neuroinspired computing. Journal of Materials Chemistry C, 2019, 7, 1298-1306.	2.7	49
31	A carbon-based memristor design for associative learning activities and neuromorphic computing. Nanoscale, 2020, 12, 13531-13539.	2.8	49
32	A Robust Memristor Based on Epitaxial Vertically Aligned Nanostructured BaTiO ₃ â^'CeO ₂ Films on Silicon. Advanced Materials, 2022, 34, e2110343.	11.1	47
33	A Multifunctional and Efficient Artificial Visual Perception Nervous System with Sb ₂ Se ₃ /CdSâ€Core/Shell (SC) Nanorod Arrays Optoelectronic Memristor. Advanced Functional Materials, 2022, 32, .	7.8	44
34	Flexible and Insoluble Artificial Synapses Based on Chemical Cross‣inked Wool Keratin. Advanced Functional Materials, 2020, 30, 2002882.	7.8	42
35	Flexible artificial synapse based on single-crystalline BiFeO3 thin film. Nano Research, 2022, 15, 2682-2688.	5.8	37
36	Impact of program/erase operation on the performances of oxide-based resistive switching memory. Nanoscale Research Letters, 2015, 10, 39.	3.1	34

3

#	Article	IF	Citations
37	Synapse behavior characterization and physical mechanism of a TiN/SiO _x /p-Si tunneling memristor device. Journal of Materials Chemistry C, 2019, 7, 1561-1567.	2.7	34
38	Emerging 2D pnictogens for catalytic applications: status and challenges. Journal of Materials Chemistry A, 2020, 8, 12887-12927.	5.2	32
39	Visible light responsive optoelectronic memristor device based on CeO $<$ i $>x<$ /i $>$ /ZnO structure for artificial vision system. Applied Physics Letters, 2021, 118, .	1.5	31
40	A Memristorâ€Based Silicon Carbide for Artificial Nociceptor and Neuromorphic Computing. Advanced Materials Technologies, 2021, 6, 2100373.	3.0	31
41	Roles of grain boundary and oxygen vacancies in Ba0.6Sr0.4TiO3 films for resistive switching device application. Applied Physics Letters, 2016, 108, .	1.5	28
42	A 2D-SnSe film with ferroelectricity and its bio-realistic synapse application. Nanoscale, 2020, 12, 21913-21922.	2.8	28
43	Memristors based on multilayer graphene electrodes for implementing a low-power neuromorphic electronic synapse. Journal of Materials Chemistry C, 2020, 8, 4926-4933.	2.7	25
44	Interface-engineered electron and hole tunneling. Science Advances, 2021, 7, .	4.7	25
45	The origin of enhanced photocatalytic activities of hydrogenated TiO ₂ nanoparticles. Dalton Transactions, 2017, 46, 10694-10699.	1.6	24
46	High-Stability Memristive Devices Based on Pd Conductive Filaments and Its Applications in Neuromorphic Computing. ACS Applied Materials & Samp; Interfaces, 2021, 13, 17844-17851.	4.0	24
47	Artificial nociceptor based on TiO2 nanosheet memristor. Science China Materials, 2021, 64, 1703-1712.	3.5	23
48	Boost of the Bio-memristor Performance for Artificial Electronic Synapses by Surface Reconstruction. ACS Applied Materials & Samp; Interfaces, 2021, 13, 39641-39651.	4.0	23
49	The application of halide perovskites in memristors. Journal of Semiconductors, 2020, 41, 051205.	2.0	22
50	The role of oxygen vacancies in the high cycling endurance and quantum conductance in BiVO ₄ â€based resistive switching memory. InformaÄnÃ-Materiály, 2020, 2, 960-967.	8.5	21
51	A Boolean OR gate implemented with an optoelectronic switching memristor. Applied Physics Letters, 2019, 115, .	1.5	20
52	Memristors: Memristor with Agâ€Clusterâ€Doped TiO ₂ Films as Artificial Synapse for Neuroinspired Computing (Adv. Funct. Mater. 1/2018). Advanced Functional Materials, 2018, 28, 1870002.	7.8	18
53	A biomimetic afferent nervous system based on the flexible artificial synapse. Nano Energy, 2022, 100, 107486.	8.2	17
54	The flexoelectric effect associated size dependent pyroelectricity in solid dielectrics. AIP Advances, 2015, 5, .	0.6	16

#	Article	IF	Citations
55	A Graphene Oxide Quantum Dots Embedded Charge Trapping Memory With Enhanced Memory Window and Data Retention. IEEE Journal of the Electron Devices Society, 2018, 6, 464-467.	1.2	16
56	Characteristic investigation of a flexible resistive memory based on a tunneling junction of Pd/BTO/LSMO on mica substrate. Applied Physics Letters, 2018, 113 , .	1.5	16
57	Self-rectifying performance in the sandwiched structure of Ag/In-Ga-Zn-O/Pt bipolar resistive switching memory. Nanoscale Research Letters, 2014, 9, 548.	3.1	15
58	Effect of Extrinsically Introduced Passive Interface Layer on the Performance of Ferroelectric Tunnel Junctions. ACS Applied Materials & Samp; Interfaces, 2017, 9, 5050-5055.	4.0	15
59	A metal/Ba0.6Sr0.4TiO3/SiO2/Si single film device for charge trapping memory towards a large memory window. Applied Physics Letters, 2017, 110, 223501.	1.5	15
60	Investigation of multilayer WS2 flakes as charge trapping stack layers in non-volatile memories. Applied Physics Letters, 2018, 112, .	1.5	15
61	Density effects of graphene oxide quantum dots on characteristics of Zr0.5Hf0.5O2 film memristors. Applied Physics Letters, 2019, 114, .	1.5	15
62	A Flexible Transient Biomemristor Based on Hybrid Structure HfO ₂ /BSA:Au Double Layers. Advanced Materials Technologies, 2020, 5, 2000191.	3.0	15
63	Alloy electrode engineering in memristors for emulating the biological synapse. Nanoscale, 2022, 14, 1318-1326.	2.8	15
64	Memristor based on two-dimensional titania nanosheets for multi-level storage and information processing. Nano Research, 2022, 15, 8419-8427.	5.8	15
65	Neuroâ€Receptor Mediated Synapse Device Based on Crumpled MXene Ti ₃ C ₂ T <i>_x</i> Nanosheets. Advanced Functional Materials, 2021, 31, 2104304.	7.8	14
66	Characteristics, properties, synthesis and advanced applications of 2D graphdiyne <i>versus</i> graphene. Materials Chemistry Frontiers, 2022, 6, 528-552.	3.2	14
67	Atomic-Scale Control of Magnetism at the Titanite-Manganite Interfaces. Nano Letters, 2019, 19, 3057-3065.	4.5	13
68	Ferroelectric Memristor Based on Hf _{0.5} Zr _{0.5} O ₂ Thin Film Combining Memristive and Neuromorphic Functionalities. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000224.	1.2	13
69	Enhanced memory characteristics of charge trapping memory by employing graphene oxide quantum dots. Applied Physics Letters, 2020, 116, .	1.5	13
70	Memristive devices based on 2D-BiOI nanosheets and their applications to neuromorphic computing. Applied Physics Letters, 2020, 116, .	1.5	13
71	Low-power memristors based on layered 2D SnSe/graphene materials. Science China Materials, 2021, 64, 1989-1996.	3.5	13
72	High-speed Si films based threshold switching device and its artificial neuron application. Applied Physics Letters, 2021, 119, .	1.5	13

#	Article	IF	CITATIONS
73	Characteristic investigation of highly oriented Hf0.5Zr0.5O2 thin-film resistive memory devices. Applied Physics Letters, 2020, 116, .	1.5	12
74	Controlling Resistance Switching Performances of Hf _{0.5} Zr _{0.5} O ₂ Films by Substrate Stress and Potential in Neuromorphic Computing. Advanced Intelligent Systems, 2022, 4, .	3.3	11
75	A radiation-hardening Ta/Ta2O5- <i>x</i> /Al2O3/InGaZnO4 memristor for harsh electronics. Applied Physics Letters, 2018, 113, .	1.5	10
76	HfO2-based memristor-CMOS hybrid implementation of artificial neuron model. Applied Physics Letters, 2022, 120, .	1,5	10
77	Memristor based on $\hat{\mathbf{l}}$ ±-In2Se3 for emulating biological synaptic plasticity and learning behavior. Science China Materials, 0, , 1.	3.5	9
78	Impacts of thermal annealing temperature on memory properties of charge trapping memory with NiO nano-pillars. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 913-916.	0.9	8
79	Realization of fast switching speed and electronic synapse in Ta/TaOx/AlN/Pt bipolar resistive memory. AIP Advances, 2020, 10, 055312.	0.6	8
80	Memristors Based on the Hybrid Structure of Oxide and Boron Nitride Nanosheets Combining Memristive and Neuromorphic Functionalities. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900539.	1.2	7
81	A Highâ€Performance Memristor Device and Its Filter Circuit Application. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000389.	1.2	7
82	Unusual Hole and Electron Midgap States and Orbital Reconstructions Induced Huge Ferroelectric Tunneling Electroresistance in BaTiO ₃ /SrTiO ₃ . Nano Letters, 2020, 20, 1101-1109.	4.5	7
83	Memristor with BiVO4 nanoparticle as artificial synapse for neuroinspired computing. Applied Physics Letters, 2022, 120, .	1.5	7
84	Highly Improved Performance in Ag-Doped BSA Films by Inserting the ZrOâ,, Layer for Nonvolatile Resistive Switching Memory. IEEE Transactions on Electron Devices, 2021, 68, 510-515.	1.6	6
85	Memristors based on carbon dots for learning activities in artificial biosynapse applications. Materials Chemistry Frontiers, 2022, 6, 1098-1106.	3.2	6
86	Ferroelectricity and Piezoelectric Response of (Sc,Y)N/(Al,Ga,In)N Monolayer Alternating Stacked Structures by Firstâ€Principles Calculations. Physica Status Solidi (B): Basic Research, 2022, 259, .	0.7	6
87	Improved charge trapping properties by embedded graphene oxide quantum-dots for flash memory application. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	5
88	Memristors mimicking the regulation of synaptic plasticity and the refractory period in the phenomenological model. Journal of Materials Chemistry C, 2020, 8, 5183-5190.	2.7	5
89	Memristive device with highly continuous conduction modulation and its underlying physical mechanism for electronic synapse application. Science China Materials, 2021, 64, 179-188.	3 . 5	5
90	A Cu/HZO/GeS/Pt Memristor for Neuroinspired Computing. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100072.	1.2	5

#	Article	IF	Citations
91	Electronic and optical properties of Mn–S co-doped anatase TiO ₂ from first-principles calculations. Materials Science-Poland, 2016, 34, 38-44.	0.4	4
92	High-Performance and Multifunctional Devices-Based Optoelectronic Memory With the 2D Narrow Bandgap Bi ₂ Te _{2.7} Se _{0.3} . IEEE Electron Device Letters, 2020, 41, 1504-1507.	2.2	4
93	Realization of long retention properties of quantum conductance through confining the oxygen vacancy diffusion. Applied Physics Reviews, 2022, 9, .	5.5	4
94	Highly Transparent Bipolar Resistive Switching Memory in Zr0.5Hf0.5O2 Films With Amorphous Semiconducting In–Ga–Zn–O as Electrode. IEEE Transactions on Electron Devices, 2015, 62, 3244-3249.	1.6	3
95	Bistable Capacitance Performance-Induced Ambipolar Charge Injected Based on Ba0.6Sr0.4TiO3 by an Inlaid Zr–Hf–O Layer for Novel Nonvolatile Memory Application. IEEE Transactions on Electron Devices, 2017, 64, 587-592.	1.6	3
96	A generalized thermodynamic frame of magneto-electric-caloric coupling effects of single phase epitaxial multiferroic thin films. Ferroelectrics, 2018, 531, 186-195.	0.3	3
97	Improving Zr0.5Hf0.5O2-based charge-trapped performance by graphene oxide quantum dots. Functional Materials Letters, 2019, 12, 1850093.	0.7	3
98	First-Principles Calculation of Cr/S Co-doped Rutile TiO ₂ . Materials Science-Poland, 2020, 38, 253-262.	0.4	3
99	Physical properties in polydomain c/a/c/a phase PbTiO3 ferroelectric thick films: effect of thermal stresses. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	2
100	Data Storage: Self-Assembled Networked PbS Distribution Quantum Dots for Resistive Switching and Artificial Synapse Performance Boost of Memristors (Adv. Mater. 7/2019). Advanced Materials, 2019, 31, 1970049.	11.1	2
101	Electronic structures of Hg-doped anatase TiO2 with different O vacancy concentrations. Materials Science-Poland, 2014, 32, 93-97.	0.4	1
102	Intelligent structural color material based on WS ₂ nanosheets: applications for anti-counterfeiting. Materials Research Express, 2019, 6, 065304.	0.8	1
103	Metal oxide materials for photoelectroactive memories and neuromorphic computing systems. , 2020, , 251-278.		1
104	Large-Scale Epitaxial Growth of Ultralong Stripe BiFeO3 Films and Anisotropic Optical Properties. ACS Applied Materials & Diterfaces, 2022, , .	4.0	1
105	Bipolar transparent resistive switching based in a-IGZO/STO/a-IGZO structure for nonvolatile memory application. AIP Conference Proceedings, 2017, , .	0.3	O
106	Effects of oxygen conditions during deposition on memory performance of metal/HfO ₂ /SiO ₂ /Si structured charge trapping memory. Materials Research Express, 2019, 6, 086306.	0.8	0