
## TomÃ;s A Santa-Coloma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3959464/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Overlapping synthetic peptides as a tool to map protein-protein interactions ̶ FSH as a model system of nonadditive interactions. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130153.                                                               | 1.1 | 1         |
| 2  | NLR family pyrin domain containing 3 (NLRP3) and caspase 1 (CASP1) modulation by intracellular Cl – concentration. Immunology, 2021, 163, 493-511.                                                                                                                    | 2.0 | 12        |
| 3  | Identification and characterization of human PEIG-1/GPRC5A as a 12-O-tetradecanoyl phorbol-13-acetate (TPA) and PKC-induced gene. Archives of Biochemistry and Biophysics, 2020, 687, 108375.                                                                         | 1.4 | 1         |
| 4  | The chloride anion as a signalling effector. Biological Reviews, 2019, 94, 1839-1856.                                                                                                                                                                                 | 4.7 | 43        |
| 5  | IL-1β, IL-2 and IL-4 concentration during porcine gestation. Theriogenology, 2019, 128, 133-139.                                                                                                                                                                      | 0.9 | 7         |
| 6  | Impairment of CFTR activity in cultured epithelial cells upregulates the expression and activity of LDH resulting in lactic acid hypersecretion. Cellular and Molecular Life Sciences, 2019, 76, 1579-1593.                                                           | 2.4 | 5         |
| 7  | N-acetyl cysteine reverts the proinflammatory state induced by cigarette smoke extract in lung Calu-3 cells. Redox Biology, 2018, 16, 294-302.                                                                                                                        | 3.9 | 27        |
| 8  | Epiregulin (EREG) is upregulated through an ILâ€1β autocrine loop in Cacoâ€2 epithelial cells with reduced<br>CFTR function. Journal of Cellular Biochemistry, 2018, 119, 2911-2922.                                                                                  | 1.2 | 21        |
| 9  | Extracellular pH and lung infections in cystic fibrosis. European Journal of Cell Biology, 2018, 97, 402-410.                                                                                                                                                         | 1.6 | 18        |
| 10 | CFTR impairment upregulates c-Src activity through IL- $1\hat{l}^2$ autocrine signaling. Archives of Biochemistry and Biophysics, 2017, 616, 1-12.                                                                                                                    | 1.4 | 16        |
| 11 | Intracellular Chloride Concentration Changes Modulate IL-1β Expression and Secretion in Human Bronchial Epithelial Cultured Cells. Journal of Cellular Biochemistry, 2017, 118, 2131-2140.                                                                            | 1.2 | 21        |
| 12 | CFTR modulates RPS27 gene expression using chloride anion as signaling effector. Archives of Biochemistry and Biophysics, 2017, 633, 103-109.                                                                                                                         | 1.4 | 14        |
| 13 | c- Src and its role in cystic fibrosis. European Journal of Cell Biology, 2016, 95, 401-413.                                                                                                                                                                          | 1.6 | 24        |
| 14 | The Chloride Anion Acts as a Second Messenger in Mammalian Cells - Modifying the Expression of<br>Specific Genes. Cellular Physiology and Biochemistry, 2016, 38, 49-64.                                                                                              | 1.1 | 35        |
| 15 | Disruption of Interleukin-1Î <sup>2</sup> Autocrine Signaling Rescues Complex I Activity and Improves ROS Levels in<br>Immortalized Epithelial Cells with Impaired Cystic Fibrosis Transmembrane Conductance Regulator<br>(CFTR) Function. PLoS ONE, 2014, 9, e99257. | 1.1 | 39        |
| 16 | CFTR activity and mitochondrial function. Redox Biology, 2013, 1, 190-202.                                                                                                                                                                                            | 3.9 | 64        |
| 17 | The Mitochondrial Complex I Activity Is Reduced in Cells with Impaired Cystic Fibrosis Transmembrane<br>Conductance Regulator (CFTR) Function. PLoS ONE, 2012, 7, e48059.                                                                                             | 1.1 | 40        |
| 18 | Measurement of cystic fibrosis transmembrane conductance regulator activity using fluorescence spectrophotometry. Analytical Biochemistry, 2011, 418, 231-237.                                                                                                        | 1.1 | 11        |

TOMÃIS A SANTA-COLOMA

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | CISD1 codifies a mitochondrial protein upregulated by the CFTR channel. Biochemical and Biophysical Research Communications, 2008, 365, 856-862.                                                                      | 1.0 | 39        |
| 20 | The expression of the mitochondrial gene MT-ND4 is downregulated in cystic fibrosis. Biochemical and Biophysical Research Communications, 2007, 356, 805-809.                                                         | 1.0 | 39        |
| 21 | Anp32e (Cpd1) and related protein phosphatase 2 inhibitors. Cerebellum, 2003, 2, 310-320.                                                                                                                             | 1.4 | 38        |
| 22 | Tyrosine Kinase c-Src Constitutes a Bridge between Cystic Fibrosis Transmembrane Regulator Channel<br>Failure and MUC1 Overexpression in Cystic Fibrosis. Journal of Biological Chemistry, 2002, 277,<br>17239-17247. | 1.6 | 38        |
| 23 | Myosin light chain kinase inhibitors induce retraction of mature oligodendrocyte processes.<br>Neurochemical Research, 2002, 27, 1305-1312.                                                                           | 1.6 | 12        |
| 24 | APC Senses Cell–Cell Contacts and Moves to the Nucleus upon Their Disruption. Biochemical and<br>Biophysical Research Communications, 2001, 284, 982-986.                                                             | 1.0 | 12        |
| 25 | Single strand mRNA differential display (SSDD) applied to the identification of serine/threonine<br>phosphatases regulated during cerebellar development. Journal of Neuroscience Methods, 2001, 105,<br>87-94.       | 1.3 | 1         |
| 26 | The rate of Tau synthesis is differentially regulated during postnatal development in mouse cerebellum. Cellular and Molecular Neurobiology, 2001, 21, 535-543.                                                       | 1.7 | 13        |
| 27 | Differential expression of CPD1 during postnatal development in the mouse cerebellum. Brain<br>Research, 2001, 907, 162-174.                                                                                          | 1.1 | 26        |
| 28 | Specific oligobodies against ERK-2 that recognize both the native and the denatured state of the protein. Journal of Immunological Methods, 2001, 252, 191-197.                                                       | 0.6 | 57        |
| 29 | NF-κB Activation Is Involved in Regulation of Cystic Fibrosis Transmembrane Conductance Regulator<br>(CFTR) by Interleukin-1β. Journal of Biological Chemistry, 2001, 276, 15441-15444.                               | 1.6 | 39        |
| 30 | Interleukin-1β regulates CFTR expression in human intestinal T84 cells. Biochimica Et Biophysica Acta -<br>Molecular Basis of Disease, 2000, 1500, 241-248.                                                           | 1.8 | 62        |
| 31 | Transforming growth factor-beta 1 modulates calcium metabolism in Sertoli cells Endocrinology, 1993, 132, 1745-1749.                                                                                                  | 1.4 | 6         |
| 32 | Identification and characterization of the chicken transforming growth factor-beta 3 promoter<br>Molecular Endocrinology, 1992, 6, 1285-1298.                                                                         | 3.7 | 9         |
| 33 | Synthetic human follicle-stimulating hormone-beta-(1-15) peptide-amide binds Ca2+ and possesses sequence similarity to calcium binding sites of calmodulin Endocrinology, 1992, 130, 1103-1107.                       | 1.4 | 11        |
| 34 | Correlation of follicle-stimulating hormone (FSH)-receptor complex internalization with the<br>sustained phase of FSH-induced calcium uptake by cultured rat Sertoli cells Endocrinology, 1992, 131,<br>2622-2628.    | 1.4 | 13        |
| 35 | The size of the mature membrane receptor for follicle-stimulating hormone is larger than that predicted from its cDNA. Journal of Molecular Endocrinology, 1992, 9, 115-121.                                          | 1.1 | 18        |
| 36 | Serine analogues of hFSH-beta-(33–53) and hFSH-beta-(81–95) inhibit hFSH binding to receptor.<br>Biochemical and Biophysical Research Communications, 1992, 184, 1273-1279.                                           | 1.0 | 10        |

| #  | Article                                                                                                                                                                                                                                                                                | IF               | CITATIONS    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| 37 | Solution structure of a synthetic peptide corresponding to a receptor binding region of FSH (hFSH-β) Tj ETQq1                                                                                                                                                                          | 1 0,78431<br>1.1 | 4 rgBT /Over |
| 38 | A synthetic peptide encompassing two discontinuous regions of hFSH-β subunit mimics the receptor binding surface of the hormone. Molecular and Cellular Endocrinology, 1991, 78, 197-204.                                                                                              | 1.6              | 21           |
| 39 | A synthetic peptide corresponding to hFSH-β-(81–95) has thioredoxin-like activity. Molecular and<br>Cellular Endocrinology, 1991, 78, 163-170.                                                                                                                                         | 1.6              | 13           |
| 40 | Sulfhydryl groups are involved in the interaction of FSH with its receptor. Biochemical and Biophysical Research Communications, 1991, 176, 1256-1261.                                                                                                                                 | 1.0              | 14           |
| 41 | Structure-function relationships of the glycoprotein hormones and their receptors. Trends in Pharmacological Sciences, 1991, 12, 199-203.                                                                                                                                              | 4.0              | 19           |
| 42 | Solid-phase assay for determination of binding parameters of ligand-protein complexes with high dissociation rates. Analytical Biochemistry, 1991, 192, 367-371.                                                                                                                       | 1.1              | 3            |
| 43 | Synthetic Peptides Corresponding to Human Follicle- Stimulating Hormone (hFSH)-β-(l–15) and hFSH-β-<br>(51–65) Induce Uptake of <sup>45</sup> Ca <sup>++</sup> by Liposomes: Evidence for<br>Calcium-Conducting Transmembrane Channel Formation*. Endocrinology, 1991, 128, 2745-2751. | 1.4              | 30           |
| 44 | A synthetic peptide corresponding to human FSH beta-subunit 33-53 binds to FSH receptor, stimulates<br>basal estradiol biosynthesis, and is a partial antagonist of FSH. Biochemistry, 1990, 29, 1194-1200.                                                                            | 1.2              | 78           |
| 45 | The use of computers in the teaching of hormone receptor interactions in the presence of two types of binding sites or negative cooperativity. Biochemical Education, 1988, 16, 90-91.                                                                                                 | 0.1              | 1            |
| 46 | Improvement on the competitive binding assay for the measurement of cyclic AMP by using ammonium sulphate precipitation. Biochemical Journal, 1987, 245, 923-924.                                                                                                                      | 1.7              | 5            |
| 47 | Cyclic biospecific affinity chromatographic method for the purification of the sex steroid binding protein (SBP): Application to the purification of SBP from toad. Biomedical Applications, 1987, 415, 297-304.                                                                       | 1.7              | 7            |
| 48 | Sex steroid binding protein from Bufo arenarum: Further characterization. Comparative Biochemistry and Physiology A, Comparative Physiology, 1986, 85, 401-405.                                                                                                                        | 0.7              | 5            |
| 49 | Characterization of a sexual steroid binding protein in Bufo arenarum. General and Comparative Endocrinology, 1985, 60, 273-279.                                                                                                                                                       | 0.8              | 9            |
| 50 | Biosynthesis of bufadienolides in toads. V. the origin of the cholesterol used by toad parotoid glands<br>for biosynthesis of bufadienolides. Steroids, 1984, 44, 11-22.                                                                                                               | 0.8              | 8            |