Yu Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3959345/publications.pdf

Version: 2024-02-01

54	1,416	21 h-index	36
papers	citations		g-index
56	56	56	2078
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	In-Situ Study of Dynamics of Refractive Index Changes in Silicon Devices Induced by UV-light Irradiation. IEEE Photonics Journal, 2022, 14, 1-5.	2.0	O
2	Electronic and Magnetic Diversity of Graphone/Graphene Superlattices. Chemistry of Materials, 2021, 33, 2090-2098.	6.7	5
3	Design of a Graphene-Based Waveguide-Integrated Multimode Phase Modulator. IEEE Photonics Journal, 2021, 13, 1-6.	2.0	4
4	Ultrasensitive formaldehyde gas sensor based on Au-loaded ZnO nanorod arrays at low temperature. Sensors and Actuators B: Chemical, 2021, 346, 130568.	7.8	50
5	Design of a Dual-Mode Graphene-on-Microring Resonator for Optical Gas Sensing. IEEE Access, 2021, 9, 56479-56485.	4.2	10
6	Multiplexed Weak Waist-Enlarged Fiber Taper Curvature Sensor and Its Rapid Inline Fabrication. Sensors, 2021, 21, 6782.	3.8	1
7	Enhanced acetone-sensing properties to ppb detection level using Au/Pd-doped ZnO nanorod. Sensors and Actuators B: Chemical, 2020, 310, 127129.	7.8	51
8	Hexagonal layered group IV–VI semiconductors and derivatives: fresh blood of the 2D family. Nanoscale, 2020, 12, 13450-13459.	5.6	20
9	A self-assembled fiber Mach–Zehnder interferometer based on liquid crystals. Journal of Materials Chemistry C, 2020, 8, 11153-11159.	5.5	8
10	Indium oxide-black phosphorus composites for ultrasensitive nitrogen dioxide sensing at room temperature. Sensors and Actuators B: Chemical, 2020, 308, 127650.	7.8	30
11	A Glycosylated Cationic Block Poly(βâ€peptide) Reverses Intrinsic Antibiotic Resistance in All ESKAPE Gramâ€Negative Bacteria. Angewandte Chemie, 2020, 132, 6886-6893.	2.0	11
12	A Glycosylated Cationic Block Poly(βâ€peptide) Reverses Intrinsic Antibiotic Resistance in All ESKAPE Gramâ€Negative Bacteria. Angewandte Chemie - International Edition, 2020, 59, 6819-6826.	13.8	63
13	High-sensitivity fiber salinity sensor based on an exposed-core microstructured fiber interferometer. Journal Physics D: Applied Physics, 2019, 52, 495402.	2.8	22
14	Enantiomeric glycosylated cationic block co-beta-peptides eradicate Staphylococcus aureus biofilms and antibiotic-tolerant persisters. Nature Communications, 2019, 10, 4792.	12.8	88
15	Modulating Blue Phosphorene by Synergetic Codoping: Indirect to Direct Gap Transition and Strong Bandgap Bowing. Advanced Functional Materials, 2019, 29, 1808721.	14.9	6
16	Deepâ€brain threeâ€photon microscopy excited at 1600 nm with silicone oil immersion. Journal of Biophotonics, 2019, 12, e201800423.	2.3	5
17	Mesostructure Carbon-Templated synthesis of mesoporous ZnO by a nanocasting route for NO2 sensing. Materials Letters, 2019, 244, 182-185.	2.6	15
18	ZnO@ZIF-8 core-shell microspheres for improved ethanol gas sensing. Sensors and Actuators B: Chemical, 2019, 284, 421-427.	7.8	113

#	Article	IF	CITATIONS
19	Visualizing the "sandwich―structure of osteocytes in their native environment deep in bone in vivo. Journal of Biophotonics, 2019, 12, e201800360.	2.3	7
20	Refractive index and pulse broadening characterization using oil immersion and its influence on threeâ€photon microscopy excited at the 1700â€nm window. Journal of Biophotonics, 2019, 12, e201800263.	2.3	3
21	Transmittance Characterization of Objective Lenses Covering all Four Near Infrared Optical Windows and its Application to Three-Photon Microscopy Excited at 1820 nm. IEEE Photonics Journal, 2018, 10, 1-7.	2.0	1
22	A Simplified Hollow-Core Photonic Crystal Fiber SERS Probe with a Fully Filled Photoreduction Silver Nanoprism. Sensors, 2018, 18, 1726.	3.8	7
23	Zinc oxide–black phosphorus composites for ultrasensitive nitrogen dioxide sensing. Nanoscale Horizons, 2018, 3, 525-531.	8.0	52
24	Selfâ€referenced axial chromatic dispersion measurement in multiphoton microscopy through 2â€eolor thirdâ€harmonic generation imaging. Journal of Biophotonics, 2018, 11, e201800071.	2.3	4
25	Sulfur dioxide gas-sensitive materials based on zeolitic imidazolate framework-derived carbon nanotubes. Journal of Materials Chemistry A, 2018, 6, 12115-12124.	10.3	45
26	UV-Enhanced Ethanol Sensing Properties of RF Magnetron-Sputtered ZnO Film. Sensors, 2018, 18, 50.	3.8	11
27	Wavelength Separation Tunable 2-Color Soliton Generation and Its Application to 2-Color Fluorescence Multiphoton Microscopy. Journal of Lightwave Technology, 2018, 36, 3249-3253.	4.6	3
28	A multilayer assembly of two mixed-valence Mn16-containing polyanions and study of their electrocatalytic activities towards water oxidation. Dalton Transactions, 2018, 47, 7282-7289.	3.3	11
29	Different nanostructured tungsten oxides synthesized by facile solvothermal route for chlorine gas sensing. Sensors and Actuators B: Chemical, 2018, 275, 306-311.	7.8	28
30	Engineering of the interactions of volatile organic compounds with MoS ₂ . Journal of Materials Chemistry C, 2017, 5, 1463-1470.	5.5	30
31	Using Diphenylphosphoryl Azide (DPPA) for the Facile Synthesis of Biodegradable Antiseptic Random Copolypeptides. Macromolecular Rapid Communications, 2017, 38, 1600601.	3.9	6
32	Highly Tunable Electronic Structures of Phosphorene/Carbon Nanotube Heterostructures through External Electric Field and Atomic Intercalation. Nano Letters, 2017, 17, 7995-8004.	9.1	15
33	Reduced graphene oxide/α-Fe2O3 hybrid nanocomposites for room temperature NO2 sensing. Sensors and Actuators B: Chemical, 2017, 241, 109-115.	7.8	84
34	Sealing of Immersion Deuterium Dioxide and Its Application to Signal Maintenance for Ex-Vivo and In-Vivo Multiphoton Microscopy Excited at the 1700-nm Window. IEEE Photonics Journal, 2017, 9, 1-8.	2.0	3
35	Reduced Graphene Oxide/Au Nanocomposite for NO2 Sensing at Low Operating Temperature. Sensors, 2016, 16, 1152.	3.8	39
36	Enhanced Acetone Sensing Characteristics of ZnO/Graphene Composites. Sensors, 2016, 16, 1876.	3.8	46

#	Article	IF	CITATIONS
37	Different Co3O4 mesostructures synthesised by templating with KIT-6 and SBA-15 via nanocasting route and their sensitivities toward ethanol. Sensors and Actuators B: Chemical, 2016, 235, 39-45.	7.8	26
38	A new organo-ruthenium substituted tungstotellurate: synthesis, structural characterization and catalytic properties. New Journal of Chemistry, 2016, 40, 8829-8836.	2.8	16
39	First Orange Fluorescence Composite Film Based on Sm-Substituted Tungstophosphate and Its Electrofluorochromic Performance. ACS Applied Materials & Samp; Interfaces, 2016, 8, 11621-11628.	8.0	26
40	Unusual electronic and magnetic properties of lateral phosphorene–WSe2 heterostructures. Journal of Materials Chemistry C, 2016, 4, 6657-6665.	5.5	10
41	Preparation of polyoxometalate stabilized gold nanoparticles and composite assembly with graphene oxide: enhanced electrocatalytic performance. New Journal of Chemistry, 2016, 40, 985-993.	2.8	28
42	All-fiber reflecting temperature probe based on the simplified hollow-core photonic crystal fiber filled with aqueous quantum dot solution. Applied Optics, 2016, 55, 974.	2.1	7
43	Realization of All-in-Fiber Liquid-Core Microstructured Optical Fiber. IEEE Photonics Technology Letters, 2016, 28, 609-612.	2.5	5
44	Quantum Dots-Based Multiplexed Fiber-Optic Temperature Sensors. IEEE Sensors Journal, 2016, 16, 2437-2441.	4.7	8
45	Variable electronic properties of lateral phosphorene–graphene heterostructures. Physical Chemistry Chemical Physics, 2015, 17, 31685-31692.	2.8	16
46	Effects of 3d transition-metal doping on electronic and magnetic properties of MoS2nanoribbons. Physical Chemistry Chemical Physics, 2015, 17, 1831-1836.	2.8	30
47	Enhancement of NO2 gas sensing response based on ordered mesoporous Fe-doped In2O3. Sensors and Actuators B: Chemical, 2014, 191, 806-812.	7.8	141
48	Charge transfer from cobaltammine complex cations to metal fluoride anions in molecular solids with novel photoelectronic effects (metal: zirconium, titanium). Dalton Transactions, 2014, 43, 14039-14044.	3.3	0
49	Ordered mesoporous Pd/SnO2 synthesized by a nanocasting route for high hydrogen sensing performance. Sensors and Actuators B: Chemical, 2011, 160, 604-608.	7.8	89
50	Mesostructured molecular solid material $ Co(en)3 $ (Zr2F11H2O) with enhanced photoelectronic effect. Dalton Transactions, 2009, , 6736.	3.3	5
51	Synthesis, Structure, and Photoluminescence Property of a New Layered Zirconium Phosphate Co(dien)2 [Zr4H8P5O26]·3H2O. Inorganic Chemistry, 2007, 46, 5847-5851.	4.0	14
52	An Unexpected Photoelectronic Effect from [Co(en)3]2(Zr2F12)(SiF6)â‹4 H2O, a Compound Containing an H-Bonded Assembly of Discrete [Co(en)3]3+, (Zr2F12)4â°', and (SiF6)2â°' lons. Angewandte Chemie - International Edition, 2005, 44, 7988-7990.	13.8	20
53	[Co(en)3][In3(H2PO4)6(HPO4)3]·H2O: A new layered indium phosphate templated by cobalt complex. Journal of Solid State Chemistry, 2004, 177, 3032-3037.	2.9	23
54	Hydrothermal synthesis and characterization of a new inorganic–organic hybrid layered zinc phosphate–phosphite (C6H15N2)2Zn4(PO4)2(HPO3)2. Dalton Transactions RSC, 2002, , 4060-4063.	2.3	52