Henrik Bruus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/395927/publications.pdf

Version: 2024-02-01

165 papers 9,550 citations

50 h-index 92 g-index

166 all docs

166
docs citations

166 times ranked 6823 citing authors

#	Article	IF	Citations
1	Acoustic trapping based on surface displacement of resonance modes. Journal of the Acoustical Society of America, 2021, 149, 1445-1453.	0.5	15
2	Theory of pressure acoustics with thermoviscous boundary layers and streaming in elastic cavities. Journal of the Acoustical Society of America, 2021, 149, 3599-3610.	0.5	16
3	Numerical study of the coupling layer between transducer and chip in acoustofluidic devices. Journal of the Acoustical Society of America, 2021, 149, 3096-3105.	0.5	10
4	Acoustophoresis in polymer-based microfluidic devices: Modeling and experimental validation. Journal of the Acoustical Society of America, 2021, 149, 4281-4291.	0.5	23
5	Theory and simulation of electroosmotic suppression of acoustic streaming. Journal of the Acoustical Society of America, 2021, 149, 3917-3928.	0.5	6
6	Numerical study of bulk acoustofluidic devices driven by thin-film transducers and whole-system resonance modes. Journal of the Acoustical Society of America, 2021, 150, 634-645.	0.5	8
7	Fabrication, Characterization, and Simulation of Glass Devices with <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Al</mml:mi><mml:mi mathvariant="normal">N</mml:mi></mml:mrow>> Thin-Film Transducers for Excitation of</mml:math>	1.5	7
8	Wirasound Resonances. Physical Review Applied, 2021, 16,. Fast Microscale Acoustic Streaming Driven by a Temperature-Gradient-Induced Nondissipative Acoustic Body Force. Physical Review Letters, 2021, 127, 064501.	2.9	11
9	Particle-size-dependent acoustophoretic motion and depletion of micro- and nano-particles at long timescales. Physical Review E, 2020, 102, 013108.	0.8	22
10	Toward optimal acoustophoretic microparticle manipulation by exploiting asymmetry. Journal of the Acoustical Society of America, 2020, 148, 359-373.	0.5	22
11	Suppression of Acoustic Streaming in Shape-Optimized Channels. Physical Review Letters, 2020, 124, 214501.	2.9	30
12	Acoustic Characterization of Polydimethylsiloxane for Microscale Acoustofluidics. Physical Review Applied, 2020, 13, .	1.5	16
13	Microparticle Acoustophoresis in Aluminum-Based Acoustofluidic Devices with PDMS Covers. Micromachines, 2020, 11, 292.	1.4	19
14	Theory of acoustic trapping of microparticles in capillary tubes. Physical Review E, 2020, 101, 023107.	0.8	3
15	Bulk-driven acoustic streaming at resonance in closed microcavities. Physical Review E, 2019, 100, 023104.	0.8	18
16	The 2019 surface acoustic waves roadmap. Journal Physics D: Applied Physics, 2019, 52, 353001.	1.3	236
17	Three-Dimensional Numerical Modeling of Surface-Acoustic-Wave Devices: Acoustophoresis of Microand Nanoparticles Including Streaming. Physical Review Applied, 2019, 12, .	1.5	39
18	Two-Dimensional Mapping Separating the Acoustic Radiation Force and Streaming in Microfluidics. Physical Review Applied, 2019, 11 , .	1.5	11

#	Article	IF	Citations
19	Experimental Characterization of Acoustic Streaming in Gradients of Density and Compressibility. Physical Review Applied, 2019, 11 , .	1.5	41
20	Whole-System Ultrasound Resonances as the Basis for Acoustophoresis in All-Polymer Microfluidic Devices. Physical Review Applied, 2019, 11 , .	1.5	37
21	3D modeling of acoustofluidics in a liquid-filled cavity including streaming, viscous boundary layers, surrounding solids, and a piezoelectric transducer. AlMS Mathematics, 2019, 4, 99-111.	0.7	30
22	Acoustic Streaming and Its Suppression in Inhomogeneous Fluids. Physical Review Letters, 2018, 120, 054501.	2.9	56
23	Different origins of acoustic streaming at resonance. Proceedings of Meetings on Acoustics, 2018, , .	0.3	2
24	In Situ Liquid SEM Studies of Electrochemical and Radiolytic Processes. Microscopy and Microanalysis, 2018, 24, 338-339.	0.2	1
25	Suppression of acoustic streaming by the inhomogeneity-induced acoustic body force. Proceedings of Meetings on Acoustics, 2018 , , .	0.3	1
26	Intra-droplet acoustic particle focusing: simulations and experimental observations. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	17
27	Theory of pressure acoustics with viscous boundary layers and streaming in curved elastic cavities. Journal of the Acoustical Society of America, 2018, 144, 766-784.	0.5	51
28	Acoustic Tweezing and Patterning of Concentration Fields in Microfluidics. Physical Review Applied, 2017, 7, .	1.5	27
29	Three-Dimensional Numerical Modeling of Acoustic Trapping in Glass Capillaries. Physical Review Applied, 2017, 8, .	1.5	32
30	Ultrasound rays in droplets: the role of viscosity and caustics in acoustic streaming. Journal of Fluid Mechanics, 2017, 826, 1-4.	1.4	5
31	Improved positioning and detectability of microparticles in droplet microfluidics using two-dimensional acoustophoresis. Journal of Micromechanics and Microengineering, 2017, 27, 084002.	1.5	9
32	Ultrasound Characterization of Microbead and Cell Suspensions by Speed of Sound Measurements of Neutrally Buoyant Samples. Analytical Chemistry, 2017, 89, 8917-8923.	3.2	31
33	Performance Study of Acoustophoretic Microfluidic Silicon-Glass Devices by Characterization of Material- and Geometry-Dependent Frequency Spectra. Physical Review Applied, 2017, 7, .	1.5	20
34	Modeling of Microdevices for SAW-Based Acoustophoresis — A Study of Boundary Conditions. Micromachines, 2016, 7, 182.	1.4	25
35	Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields. Physical Review Letters, 2016, 117, 114504.	2.9	71
36	lso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping. Nature Communications, 2016, 7, 11556.	5.8	181

#	Article	IF	CITATIONS
37	Sap flow and sugar transport in plants. Reviews of Modern Physics, 2016, 88, .	16.4	141
38	Continuum modeling of hydrodynamic particle–particle interactions in microfluidic high-concentration suspensions. Lab on A Chip, 2016, 16, 1178-1188.	3.1	33
39	Forces acting on a small particle in an acoustical field in a thermoviscous fluid. Physical Review E, 2015, 92, 043010.	0.8	172
40	Morphological instability during steady electrodeposition at overlimiting currents. Physical Review E, 2015, 92, 052310.	0.8	20
41	Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels. Physical Review E, 2015, 92, 063018.	0.8	54
42	Sharp-interface model of electrodeposition and ramified growth. Physical Review E, 2015, 92, 042302.	0.8	15
43	Continuum Nanofluidics. Langmuir, 2015, 31, 13275-13289.	1.6	33
44	Time-dependent Taylor–Aris dispersion of an initial point concentration. Journal of Fluid Mechanics, 2014, 752, 107-122.	1.4	24
45	Acoustic Radiation Force onÂSmall Particles. , 2014, , 65-80.		1
46	Perturbation Theory and Ultrasound Resonances. , 2014, , 29-45.		2
47	Perturbation Theory and Ultrasound Resonances. , 2014, , 29-45. Governing Equations in Microfluidics. , 2014, , 1-28.		12
		0.8	
47	Governing Equations in Microfluidics. , 2014, , 1-28. Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in	0.8	12
47	Governing Equations in Microfluidics., 2014, , 1-28. Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels. Physical Review E, 2014, 90, 043016. Concentration polarization, surface currents, and bulk advection in a microchannel. Physical Review		93
48	Governing Equations in Microfluidics., 2014, , 1-28. Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels. Physical Review E, 2014, 90, 043016. Concentration polarization, surface currents, and bulk advection in a microchannel. Physical Review E, 2014, 90, 043020. Acoustic interaction forces between small particles in an ideal fluid. Physical Review E, 2014, 90,	0.8	93 46
47 48 49 50	Governing Equations in Microfluidics. , 2014, , 1-28. Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels. Physical Review E, 2014, 90, 043016. Concentration polarization, surface currents, and bulk advection in a microchannel. Physical Review E, 2014, 90, 043020. Acoustic interaction forces between small particles in an ideal fluid. Physical Review E, 2014, 90, 063007. Transport-limited water splitting at ion-selective interfaces during concentration polarization.	0.8	12 93 46 105
47 48 49 50	Coverning Equations in Microfluidics., 2014, , 1-28. Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels. Physical Review E, 2014, 90, 043016. Concentration polarization, surface currents, and bulk advection in a microchannel. Physical Review E, 2014, 90, 043020. Acoustic interaction forces between small particles in an ideal fluid. Physical Review E, 2014, 90, 063007. Transport-limited water splitting at ion-selective interfaces during concentration polarization. Physical Review E, 2014, 89, 042405. Theoretical Aspects of Microchannel Acoustofluidics: Thermoviscous Corrections to the Radiation	0.8	12 93 46 105

#	Article	IF	CITATIONS
55	Ultrasound-induced acoustophoretic motion of microparticles in three dimensions. Physical Review E, 2013, 88, 023006.	0.8	132
56	Migration of cells in a social context. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 129-134.	3. 3	97
57	Generalized extended Navier-Stokes theory: Correlations in molecular fluids with intrinsic angular momentum. Journal of Chemical Physics, 2013, 138, 034503.	1.2	10
58	Tunable-angle wedge transducer for improved acoustophoretic control in a microfluidic chip. Journal of Micromechanics and Microengineering, 2013, 23, 105002.	1.5	10
59	The Role of Paracrine and Autocrine Signaling in the Early Phase of Adipogenic Differentiation of Adipose-derived Stem Cells. PLoS ONE, 2013, 8, e63638.	1.1	46
60	Modeling the Hydrodynamics of Phloem Sieve Plates. Frontiers in Plant Science, 2012, 3, 151.	1.7	80
61	Forces acting on a small particle in an acoustical field in a viscous fluid. Physical Review E, 2012, 85, 016327.	0.8	387
62	Transient Taylor–Aris dispersion for time-dependent flows in straight channels. Journal of Fluid Mechanics, 2012, 691, 95-122.	1.4	40
63	Acoustofluidics 10: Scaling laws in acoustophoresis. Lab on A Chip, 2012, 12, 1578.	3.1	119
64	Measuring acoustic energy density in microchannel acoustophoresis using a simple and rapid light-intensity method. Lab on A Chip, 2012, 12, 2337.	3.1	47
65	Current-Induced Membrane Discharge. Physical Review Letters, 2012, 109, 108301.	2.9	134
66	Transient Convection, Diffusion, and Adsorption in Surface-Based Biosensors. Langmuir, 2012, 28, 7557-7563.	1.6	55
67	Acoustofluidics 2: Perturbation theory and ultrasound resonance modes. Lab on A Chip, 2012, 12, 20-28.	3.1	260
68	Acoustofluidics 7: The acoustic radiation force on small particles. Lab on A Chip, 2012, 12, 1014.	3.1	714
69	Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane. Physical Review E, 2012, 86, 056307.	0.8	194
70	A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab on A Chip, 2012, 12, 4617.	3.1	461
71	High-throughput, temperature-controlled microchannel acoustophoresis device made with rapid prototyping. Journal of Micromechanics and Microengineering, 2012, 22, 075017.	1.5	62
72	A self-contained, programmable microfluidic cell culture system with real-time microscopy access. Biomedical Microdevices, 2012, 14, 385-399.	1.4	33

#	Article	IF	Citations
73	Analysis of laser-induced heating in optical neuronal guidance. Journal of Neuroscience Methods, 2012, 209, 168-177.	1.3	32
74	Automated and temperature-controlled micro-PIV measurements enabling long-term-stable microchannel acoustophoresis characterization. Lab on A Chip, 2011, 11, 4152.	3.1	137
75	Nanoflow hydrodynamics. Physical Review E, 2011, 84, 036311.	0.8	28
76	Acoustofluidics 1: Governing equations in microfluidics. Lab on A Chip, 2011, 11, 3742.	3.1	141
77	Forthcoming Lab on a Chip tutorial series on acoustofluidics: Acoustofluidicsâ€"exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation. Lab on A Chip, 2011, 11, 3579.	3.1	186
78	Topology optimized microbioreactors. Biotechnology and Bioengineering, 2011, 108, 786-796.	1.7	21
79	Surface-dependent chemical equilibrium constants and capacitances for bare and 3-cyanopropyldimethylchlorosilane coated silica nanochannels. Journal of Colloid and Interface Science, 2011, 353, 301-310.	5.0	46
80	Streaming current and wall dissolution over 48h in silica nanochannels. Journal of Colloid and Interface Science, 2011, 360, 262-271.	5.0	41
81	Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels. Physical Review E, 2011, 83, 056307.	0.8	27
82	Optimality of the MÃ $\frac{1}{4}$ nch mechanism for translocation of sugars in plants. Journal of the Royal Society Interface, 2011, 8, 1155-1165.	1.5	76
83	Optimal Homogenization of Perfusion Flows in Microfluidic Bio-Reactors: A Numerical Study. PLoS ONE, 2011, 6, e14574.	1.1	8
84	Self-consistent unstirred layers in osmotically driven flows. Journal of Fluid Mechanics, 2010, 662, 197-208.	1.4	7
85	Nanostructures for all-polymer microfluidic systems. Microelectronic Engineering, 2010, 87, 1379-1382.	1.1	42
86	Rotational and spin viscosities of water: Application to nanofluidics. Journal of Chemical Physics, 2010, 133, 144906.	1.2	25
87	Pulsatile microfluidics as an analytical tool for determining the dynamic characteristics of microfluidic systems. Journal of Micromechanics and Microengineering, 2010, 20, 035026.	1.5	24
88	Acoustophoretic Synchronization of Mammalian Cells in Microchannels. Analytical Chemistry, 2010, 82, 3094-3098.	3.2	88
89	Strongly nonlinear dynamics of electrolytes in large ac voltages. Physical Review E, 2010, 82, 011501.	0.8	115
90	Measuring the local pressure amplitude in microchannel acoustophoresis. Lab on A Chip, 2010, 10, 563.	3.1	229

#	Article	IF	Citations
91	Numerical analysis of finite Debye-length effects in induced-charge electro-osmosis. Physical Review E, 2009, 79, 066316.	0.8	35
92	Selective bioparticle retention and characterization in a chipâ€integrated confocal ultrasonic cavity. Biotechnology and Bioengineering, 2009, 103, 323-328.	1.7	38
93	Spatial confinement of ultrasonic force fields in microfluidic channels. Ultrasonics, 2009, 49, 112-119.	2.1	63
94	Topology and shape optimization of induced-charge electro-osmotic micropumps. New Journal of Physics, 2009, 11, 075019.	1.2	45
95	Acoustofluidics: theory and simulation of radiation forces at ultrasound resonances in microfluidic devices. Proceedings of Meetings on Acoustics, 2009, , .	0.3	12
96	Integrated acoustic and magnetic separation in microfluidic channels. Applied Physics Letters, 2009, 95, 254103.	1.5	74
97	Osmotically driven flows in microchannels separated by a semipermeable membrane. Lab on A Chip, 2009, 9, 2093.	3.1	25
98	Investigations on LED illumination for micro-PIV including a novel front-lit configuration. Experiments in Fluids, 2008, 44, 211-219.	1.1	41
99	A compact viewing configuration for stereoscopic micro-PIV utilizing mm-sized mirrors. Experiments in Fluids, 2008, 45, 1015-1021.	1.1	8
100	Theoretical analysis of a new, efficient microfluidic magnetic bead separator based on magnetic structures on multiple length scales. Microfluidics and Nanofluidics, 2008, 4, 565-573.	1.0	29
101	Acoustic resonances in straight micro channels: Beyond the 1D-approximation. Lab on A Chip, 2008, 8, 1178.	3.1	50
102	A theoretical analysis of the resolution due to diffusion and size dispersion of particles in deterministic lateral displacement devices. Journal of Micromechanics and Microengineering, 2008, 18, 075030.	1.5	34
103	Equilibrium and Nonequilibrium States in Microfluidic Double Emulsions. Physical Review Letters, 2008, 101, 164502.	2.9	119
104	Multidirectional sorting modes in deterministic lateral displacement devices. Physical Review E, 2008, 78, 046304.	0.8	55
105	Mass and Charge Transport in Micro and Nanofluidic Channels. Nanoscale and Microscale Thermophysical Engineering, 2007, 11, 57-69.	1.4	8
106	Flow reversal at low voltage and low frequency in a microfabricated ac electrokinetic pump. Physical Review E, 2007, 76, 056305.	0.8	35
107	Scaling behavior of optimally structured catalytic microfluidic reactors. Physical Review E, 2007, 75, 016301.	0.8	70
108	Double thermal oxidation scheme for the fabrication of SiO2nanochannels. Nanotechnology, 2007, 18, 245301.	1.3	67

#	Article	IF	Citations
109	Experimental investigation of bubble formation during capillary filling of SiO2 nanoslits. Applied Physics Letters, 2007, 91, .	1.5	76
110	Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations. Lab on A Chip, 2007, 7, 1336.	3.1	129
111	Quantitative characterization of magnetic separators: Comparison of systems with and without integrated microfluidic mixers. Biomedical Microdevices, 2007, 9, 195-205.	1.4	31
112	Towards a programmable magnetic bead microarray in a microfluidic channel. Journal of Magnetism and Magnetic Materials, 2007, 311, 409-415.	1.0	15
113	Design of Micro-Fluidic Bio-Reactors Using Topology Optimization. Journal of Computational and Theoretical Nanoscience, 2007, 4, 814-816.	0.4	16
114	AC electroosmotic pump with bubble-free palladium electrodes and rectifying polymer membrane valves. Lab on A Chip, 2006, 6, 280-288.	3.1	46
115	A high-level programming-language implementation of topology optimization applied to steady-state Navier-Stokes flow. International Journal for Numerical Methods in Engineering, 2006, 65, 975-1001.	1.5	338
116	A low-energy, turning microvalve with high-pressure seals: scaling of friction. Journal of Micromechanics and Microengineering, 2006, 16, 2121-2127.	1.5	4
117	Transient pressure drops of gas bubbles passing through liquid-filled microchannel contractions: an experimental study. Journal of Micromechanics and Microengineering, 2006, 16, 143-149.	1.5	22
118	Transport coefficients for electrolytes in arbitrarily shaped nano- and microfluidic channels. New Journal of Physics, 2006, 8, 37-37.	1.2	12
119	A numerical study of two-phase Stokes flow in an axisymmetric flow-focusing device. Physics of Fluids, 2006, 18, 077103.	1.6	58
120	Universal dynamics in the onset of a Hagen-Poiseuille flow. Physical Review E, 2006, 74, 017301.	0.8	12
121	Universality in edge-source diffusion dynamics. Physical Review E, 2006, 73, 012101.	0.8	4
122	ac electrokinetic micropumps: The effect of geometrical confinement, Faradaic current injection, and nonlinear surface capacitance. Physical Review E, 2006, 73, 056313.	0.8	154
123	Frequency response in surface-potential driven electrohydrodynamics. Physical Review E, 2006, 73, 037302.	0.8	3
124	Theoretical comparison of magnetic and hydrodynamic interactions between magnetically tagged particles in microfluidic systems. Journal of Magnetism and Magnetic Materials, 2005, 293, 578-583.	1.0	53
125	Magnetic separation in microfluidic systems using microfabricated electromagnets—experiments and simulations. Journal of Magnetism and Magnetic Materials, 2005, 293, 597-604.	1.0	133
126	Micro particle-image velocimetry of bead suspensions and blood flows. Experiments in Fluids, 2005, 39, 507-513.	1.1	35

#	Article	IF	Citations
127	Reexamination of Hagen-Poiseuille flow: Shape dependence of the hydraulic resistance in microchannels. Physical Review E, 2005, 71, 057301.	0.8	217
128	Electrohydrodynamics of binary electrolytes driven by modulated surface potentials. Physical Review E, 2005, 71, 056306.	0.8	26
129	Surface-directed capillary system; theory, experiments and applications. Lab on A Chip, 2005, 5, 827.	3.1	85
130	Microfluidic capturing-dynamics of paramagnetic bead suspensions. Lab on A Chip, 2005, 5, 1293.	3.1	53
131	Long-term stable electroosmotic pump with ion exchange membranes. Lab on A Chip, 2005, 5, 730.	3.1	88
132	A novel electro-osmotic pump design for nonconducting liquids: theoretical analysis of flow rate–pressure characteristics and stability. Journal of Micromechanics and Microengineering, 2005, 15, 883-891.	1.5	42
133	The clogging pressure of bubbles in hydrophilic microchannel contractions. Journal of Micromechanics and Microengineering, 2004, 14, 876-883.	1.5	47
134	Polymer microfluidic chip for online monitoring of microarray hybridizations. Lab on A Chip, 2004, 4, 28.	3.1	62
135	Theoretical analysis of the low-voltage cascade electro-osmotic pump. Sensors and Actuators B: Chemical, 2003, 92, 127-132.	4.0	35
136	Checkerboard local density of states in striped domains pinned by vortices. Physical Review B, 2003, 67,	1.1	23
137	Bias Dependent Subband Edges and the 0.7 Conductance Anomaly. Physica Scripta, 2002, T101, 151.	1.2	6
138	The anomalous 0.5 and 0.7 conductance plateaus in quantum point contacts. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 10, 97-102.	1.3	69
139	SO(5) theory of insulating vortex cores in the high Tc materials. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1259-1260.	0.6	1
140	SO(5) theory of insulating vortex cores in high-Tcmaterials. Physical Review B, 2000, 61, 6298-6302.	1.1	40
141	Magnetic neutron scattering resonance of high-Tcsuperconductors in external magnetic fields: An SO(5) study. Physical Review B, 2000, 62, 8703-8706.	1.1	3
142	Bias and temperature dependence of the 0.7 conductance anomaly in quantum point contacts. Physical Review B, 2000, 62, 10950-10957.	1.1	206
143	Excitations in antiferromagnetic cores of superconducting vortices. Physical Review B, 1999, 59, 4349-4357.	1.1	10
144	Localized plasmons in point contacts. Semiconductor Science and Technology, 1998, 13, A30-A32.	1.0	8

#	Article	IF	Citations
145	Periodic magnetoconductance fluctuations in triangular quantum dots in the absence of selective probing. Physical Review B, 1998, 57, 15408-15415.	1.1	24
146	Energy level statistics of the two-dimensional Hubbard model at low filling. Physical Review B, 1997, 55, 9142-9159.	1.1	34
147	Parametric correlation of coulomb blockade conductance peaks in chaotic quantum dots. Physica Scripta, 1997, T69, 13-16.	1.2	10
148	Parametric conductance correlation for irregularly shaped quantum dots. Physical Review B, 1996, 53, 9968-9983.	1.1	43
149	The spectrum of the two-dimensional Hubbard model at low filling. Europhysics Letters, 1996, 35, 321-326.	0.7	19
150	Spectral properties of statistical mechanics models. Journal of Physics A, 1996, 29, L483-L488.	1.6	10
151	Edge diffraction, trace formulae and the cardioid billiard. Nonlinearity, 1996, 9, 1023-1047.	0.6	44
152	Quantum chaos in a deformable billiard: Applications to quantum dots. Physical Review B, 1994, 50, 18275-18287.	1.1	51
153	Magnetotransport in quantum wires Physica B: Condensed Matter, 1994, 194-196, 1239-1240.	1.3	O
154	Universal fluctuation effects in chaotic quantum dots. Surface Science, 1994, 305, 490-494.	0.8	19
155	Chaos and fluctuations in quantum dots. Physica B: Condensed Matter, 1993, 189, 43-56.	1.3	39
156	Magnetoconductivity of quantum wires with elastic and inelastic scattering. Physical Review B, 1993, 48, 11144-11155.	1.1	60
157	Magnetoconductivity in disordered quantum wires. Journal of Physics Condensed Matter, 1992, 4, 9131-9146.	0.7	4
158	Corbino-capacitance technique for contactless measurements on conducting layers: application to persistent photoconductivity. , 1991 , , .		0
159	Quantum hall samples prepared by helium-ion implantation. IEEE Transactions on Instrumentation and Measurement, 1991, 40, 225-227.	2.4	2
160	Quantum Hall metrology samples and their use for resistance calibration. Physica Scripta, 1991, 44, 418-426.	1.2	0
161	The vortex picture of the quantum Hall effect. Superlattices and Microstructures, 1990, 8, 349-351.	1.4	0
162	Persistent photoconductivity in heterostructures measured by contactless corbino capacitance technique. Superlattices and Microstructures, 1990, 8, 365-367.	1.4	6

HENRIK BRUUS

#	Article	IF	CITATIONS
163	Observation of the i=1/2fractional quantum Hall plateau in AlGaAs/GaAs/AlGaAs selectively doped double heterostructures. Semiconductor Science and Technology, 1989, 4, 858-865.	1.0	8
164	Mechanism of plateau formation in the quantum Hall effect. European Physical Journal B, 1989, 73, 501-510.	0.6	2
165	The mechanism of plateau formation in the fractional quantum Hall effect. Journal of Physics C: Solid State Physics, 1988, 21, L375-L379.	1.5	3