Tuula Aalto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3958846/publications.pdf

Version: 2024-02-01

48 1,296 19 32
papers citations h-index g-index

82 82 82 2621 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Atmospheric transport of carbon dioxide to a baseline monitoring station in northern Finland. Tellus, Series B: Chemical and Physical Meteorology, 2022, 57, 366.	0.8	9
2	Parametrization of two photosynthesis models at the canopy scale in a northern boreal Scots pine forest. Tellus, Series B: Chemical and Physical Meteorology, 2022, 59, 847.	0.8	54
3	Stomatal-scale modelling of the competition between ozone sinks at the air–leaf interface. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 381.	0.8	6
4	A recent build-up of atmospheric CO ₂ over Europe. Part 1: observed signals and possible explanations. Tellus, Series B: Chemical and Physical Meteorology, 2022, 62, 1.	0.8	40
5	Methane budget estimates in Finland from the CarbonTracker Europe-CH ₄ data assimilation system. Tellus, Series B: Chemical and Physical Meteorology, 2022, 71, 1565030.	0.8	11
6	Modelling spatioâ€ŧemporal soil moisture dynamics in mountain tundra. Hydrological Processes, 2022, 36, .	1.1	5
7	Towards agricultural soil carbon monitoring, reporting, and verification through the Field Observatory Network (FiON). Geoscientific Instrumentation, Methods and Data Systems, 2022, 11, 93-109.	0.6	8
8	The Role of Emission Sources and Atmospheric Sink in the Seasonal Cycle of CH4 and \hat{l} 13-CH4: Analysis Based on the Atmospheric Chemistry Transport Model TM5. Atmosphere, 2022, 13, 888.	1.0	1
9	The consolidated European synthesis of CH ₄ and N ₂ O emissions for the European Union and United Kingdom: 1990–2017. Earth System Science Data, 2021, 13, 2307-2362.	3.7	16
10	The Community Inversion Framework v1.0: a unified system for atmospheric inversion studies. Geoscientific Model Development, 2021, 14, 5331-5354.	1.3	15
11	Utilizing Earth Observations of Soil Freeze/Thaw Data and Atmospheric Concentrations to Estimate Cold Season Methane Emissions in the Northern High Latitudes. Remote Sensing, 2021, 13, 5059.	1.8	5
12	Modeled Microbial Dynamics Explain the Apparent Temperature Sensitivity of Wetland Methane Emissions. Global Biogeochemical Cycles, 2020, 34, e2020GB006678.	1.9	34
13	Sensitivity of 21st century simulated ecosystem indicators to model parameters, prescribed climate drivers, RCP scenarios and forest management actions for two Finnish boreal forest sites. Biogeosciences, 2020, 17, 2681-2700.	1.3	12
14	Evaluating two soil carbon models within the global land surface model JSBACH using surface and spaceborne observations of atmospheric CO ₂ . Biogeosciences, 2020, 17, 5721-5743.	1.3	6
15	Parameter calibration and stomatal conductance formulation comparison for boreal forests with adaptive population importance sampler in the land surface model JSBACH. Geoscientific Model Development, 2019, 12, 4075-4098.	1.3	10
16	Monitoring changes in forestry and seasonal snow using surface albedo during 1982–2016 as an indicator. Biogeosciences, 2019, 16, 223-240.	1.3	8
17	Ecosystem Services Related to Carbon Cycling $\hat{a}\in$ Modeling Present and Future Impacts in Boreal Forests. Frontiers in Plant Science, 2019, 10, 343.	1.7	31
18	Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations. Earth System Science Data, 2019, 11, 1263-1289.	3.7	69

#	Article	IF	Citations
19	Inverse modelling of European CH ₄ emissions during 2006–2012 using different inverse models and reassessed atmospheric observations. Atmospheric Chemistry and Physics, 2018, 18, 901-920.	1.9	77
20	Smos Retrievals of Soil Freezing and Thawing and its Applications. , 2018, , .		2
21	Calibrating the sqHIMMELI v1.0 wetland methane emission model with hierarchical modeling and adaptive MCMC. Geoscientific Model Development, 2018, 11, 1199-1228.	1.3	12
22	Measurement of the ¹³ C isotopic signature of methane emissions from northern European wetlands. Global Biogeochemical Cycles, 2017, 31, 605-623.	1.9	52
23	Early snowmelt significantly enhances boreal springtime carbon uptake. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11081-11086.	3.3	84
24	Methane fluxes in the high northern latitudes for 2005–2013 estimated using a Bayesian atmospheric inversion. Atmospheric Chemistry and Physics, 2017, 17, 3553-3572.	1.9	59
25	Global methane emission estimates for 2000–2012 from CarbonTracker Europe-CH ₄ v1.0. Geoscientific Model Development, 2017, 10, 1261-1289.	1.3	40
26	Modelling sun-induced fluorescence and photosynthesis with a land surface model at local and regional scales in northern Europe. Biogeosciences, 2017, 14, 1969-1987.	1.3	40
27	HIMMELI v1.0: Helsinki Model of MEthane buiLd-up and emission for peatlands. Geoscientific Model Development, 2017, 10, 4665-4691.	1.3	24
28	Response of water use efficiency to summer drought in aÂboreal Scots pine forest in Finland. Biogeosciences, 2017, 14, 4409-4422.	1.3	30
29	Evaluating Biosphere Model Estimates of the Start of the Vegetation Active Season in Boreal Forests by Satellite Observations. Remote Sensing, 2016, 8, 580.	1.8	17
30	Large contribution of boreal upland forest soils to a catchmentâ€scale CH ₄ balance in a wet year. Geophysical Research Letters, 2016, 43, 2946-2953.	1.5	41
31	Digital photography for assessing the link between vegetation phenology and CO&Itsub>2&It/sub> exchange in two contrasting northern ecosystems. Geoscientific Instrumentation, Methods and Data Systems, 2016, 5, 417-426.	0.6	18
32	Constraining ecosystem model with adaptive Metropolis algorithm using boreal forest site eddy covariance measurements. Nonlinear Processes in Geophysics, 2016, 23, 447-465.	0.6	4
33	Top-down estimates of European CH ₄ and N ₂ O emissions based on four different inverse models. Atmospheric Chemistry and Physics, 2015, 15, 715-736.	1.9	92
34	Tropospheric CH ₄ signals as observed by NDACC FTIR at globally distributed sites and comparison to GAW surface in situ measurements. Atmospheric Measurement Techniques, 2014, 7, 2337-2360.	1.2	38
35	MODIS time-series-derived indicators for the beginning of the growing season in boreal coniferous forest — A comparison with CO2 flux measurements and phenological observations in Finland. Remote Sensing of Environment, 2014, 140, 625-638.	4.6	36
36	Retrieval of methane source strengths in Europe using a simple modeling approach to assess the potential of spaceborne lidar observations. Atmospheric Chemistry and Physics, 2014, 14, 2625-2637.	1.9	5

Tuula Aalto

#	Article	IF	CITATIONS
37	TransCom N ₂ O model inter-comparison – Part 2: Atmospheric inversion estimates of N ₂ O emissions. Atmospheric Chemistry and Physics, 2014, 14, 6177-6194.	1.9	49
38	SNOWCARBO: Monitoring and assessment of carbon balance related phenomena in Finland and northern Eurasia. , $2011, \dots$		1
39	Tropospheric methane in northern Finland: seasonal variations, transport patterns and correlations with other trace gases. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 251-259.	0.8	19
40	Temperature dependence of leafâ€level CO 2 fixation: revising biochemical coefficients through analysis of leaf threeâ€dimensional structure. New Phytologist, 2005, 166, 205-215.	3.5	21
41	Atmospheric transport of carbon dioxide to a baseline monitoring station in northern Finland. Tellus, Series B: Chemical and Physical Meteorology, 2005, 57, 366-374.	0.8	5
42	Optimal determination of the parameters controlling biospheric CO2 fluxes over Europe using eddy covariance fluxes and satellite NDVI measurements. Tellus, Series B: Chemical and Physical Meteorology, 2004, 56, 93-104.	0.8	10
43	Optimal determination of the parameters controlling biospheric CO2 fluxes over Europe using eddy covariance fluxes and satellite NDVI measurements. Tellus, Series B: Chemical and Physical Meteorology, 2004, 56, 93-104.	0.8	15
44	Is Rafflesia an endothermic flower?. New Phytologist, 2002, 154, 429-437.	3.5	28
45	Comparison of an optimal stomatal regulation model and a biochemical model in explaining CO2 exchange in field conditions. Silva Fennica, 2002, 36, .	0.5	12
46	Modeling 13C discrimination in tree rings. Global Biogeochemical Cycles, 2000, 14, 213-223.	1.9	45
47	A Three-dimensional Stomatal CO2Exchange Model Including Gaseous Phase and Leaf Mesophyll Separated by Irregular Interface. Journal of Theoretical Biology, 1999, 196, 115-128.	0.8	43
48	Carbon dioxide exchange of Scots pine shoots as estimated by a biochemical model and cuvette field measurements. Silva Fennica, 1998, 32, .	0.5	17