Mariana Igoillo-Esteve

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3958844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	tRNA Biology in the Pathogenesis of Diabetes: Role of Genetic and Environmental Factors. International Journal of Molecular Sciences, 2021, 22, 496.	1.8	9
2	Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. International Review of Cell and Molecular Biology, 2021, 359, 139-256.	1.6	7
3	DNAJC3 deficiency induces β-cell mitochondrial apoptosis and causes syndromic young-onset diabetes. European Journal of Endocrinology, 2021, 184, 455-468.	1.9	29
4	A functional genomic approach to identify reference genes for human pancreatic beta cell real-time quantitative RT-PCR analysis. Islets, 2021, 13, 51-65.	0.9	5
5	Current Drug Repurposing Strategies for Rare Neurodegenerative Disorders. Frontiers in Pharmacology, 2021, 12, 768023.	1.6	14
6	Combined transcriptome and proteome profiling of the pancreatic β-cell response to palmitate unveils key pathways of β-cell lipotoxicity. BMC Genomics, 2020, 21, 590.	1.2	35
7	Exenatide induces frataxin expression and improves mitochondrial function in Friedreich ataxia. JCI Insight, 2020, 5, .	2.3	39
8	YIPF5 mutations cause neonatal diabetes and microcephaly through endoplasmic reticulum stress. Journal of Clinical Investigation, 2020, 130, 6338-6353.	3.9	58
9	A Review of Mouse Models of Monogenic Diabetes and ER Stress Signaling. Methods in Molecular Biology, 2020, 2128, 55-67.	0.4	4
10	The tRNA Epitranscriptome and Diabetes: Emergence of tRNA Hypomodifications as a Cause of Pancreatic β-Cell Failure. Endocrinology, 2019, 160, 1262-1274.	1.4	13
11	Pancreatic β-cell tRNA hypomethylation and fragmentation link TRMT10A deficiency with diabetes. Nucleic Acids Research, 2018, 46, 10302-10318.	6.5	93
12	Inflammatory stress in islet β-cells: therapeutic implications for type 2 diabetes?. Current Opinion in Pharmacology, 2018, 43, 40-45.	1.7	22
13	Guanabenz Sensitizes Pancreatic β Cells to Lipotoxic Endoplasmic Reticulum Stress and Apoptosis. Endocrinology, 2017, 158, 1659-1670.	1.4	21
14	Endoplasmic reticulum stress and eIF2α phosphorylation: The Achilles heel of pancreatic β cells. Molecular Metabolism, 2017, 6, 1024-1039.	3.0	192
15	Insulinoma Localization by Glucagon-Like Peptide-1 Receptor Imaging After 18 Years of Hypoglycemia. AACE Clinical Case Reports, 2015, 1, e187-e193.	0.4	1
16	In vitro use of free fatty acids bound to albumin: A comparison of protocols. BioTechniques, 2015, 58, 228-33.	0.8	63
17	Unveiling a common mechanism of apoptosis in β-cells and neurons in Friedreich's ataxia. Human Molecular Genetics, 2015, 24, 2274-2286.	1.4	58
18	A Missense Mutation in <i>PPP1R15B</i> Causes a Syndrome Including Diabetes, Short Stature, and Microcephaly. Diabetes, 2015, 64, 3951-3962.	0.3	71

2

#	Article	IF	CITATIONS
19	Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta cells via different mechanisms. Diabetologia, 2015, 58, 2307-2316.	2.9	181
20	RNA Sequencing Identifies Dysregulation of the Human Pancreatic Islet Transcriptome by the Saturated Fatty Acid Palmitate. Diabetes, 2014, 63, 1978-1993.	0.3	226
21	tRNA Methyltransferase Homolog Gene TRMT10A Mutation in Young Onset Diabetes and Primary Microcephaly in Humans. PLoS Genetics, 2013, 9, e1003888.	1.5	103
22	Diabetes in Friedreich Ataxia. Journal of Neurochemistry, 2013, 126, 94-102.	2.1	67
23	Central role and mechanisms of β ell dysfunction and death in friedreich ataxia–associated diabetes. Annals of Neurology, 2012, 72, 971-982.	2.8	84
24	Death Protein 5 and p53-Upregulated Modulator of Apoptosis Mediate the Endoplasmic Reticulum Stress–Mitochondrial Dialog Triggering Lipotoxic Rodent and Human β-Cell Apoptosis. Diabetes, 2012, 61, 2763-2775.	0.3	118
25	The Human Pancreatic Islet Transcriptome: Expression of Candidate Genes for Type 1 Diabetes and the Impact of Pro-Inflammatory Cytokines. PLoS Genetics, 2012, 8, e1002552.	1.5	398
26	DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO Journal, 2012, 31, 1405-1426.	3.5	355
27	Clucose-6-Phosphate Dehydrogenase of Trypanosomatids: Characterization, Target Validation, and Drug Discovery. Molecular Biology International, 2011, 2011, 1-10.	1.7	19
28	Glycosomal ABC transporters of Trypanosoma brucei: Characterisation of their expression, topology and substrate specificity. International Journal for Parasitology, 2011, 41, 429-438.	1.3	37
29	The Transcription Factor B-Cell Lymphoma (BCL)-6 Modulates Pancreatic β-Cell Inflammatory Responses. Endocrinology, 2011, 152, 447-456.	1.4	13
30	STAT1 Is a Master Regulator of Pancreatic β-Cell Apoptosis and Islet Inflammation. Journal of Biological Chemistry, 2011, 286, 929-941.	1.6	144
31	Ubiquitin Fold Modifier 1 (UFM1) and Its Target UFBP1 Protect Pancreatic Beta Cells from ER Stress-Induced Apoptosis. PLoS ONE, 2011, 6, e18517.	1.1	159
32	Enhanced Signaling Downstream of Ribonucleic Acid-Activated Protein Kinase-Like Endoplasmic Reticulum Kinase Potentiates Lipotoxic Endoplasmic Reticulum Stress in Human Islets. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 1442-1449.	1.8	52
33	The 6-Phosphogluconate Dehydrogenase of Leishmania (Leishmania) mexicana: Gene Characterization and Protein Structure Prediction. Journal of Molecular Microbiology and Biotechnology, 2010, 19, 213-223.	1.0	8
34	Genetic and Chemical Evaluation of Trypanosoma brucei Oleate Desaturase as a Candidate Drug Target. PLoS ONE, 2010, 5, e14239.	1.1	12
35	Glucagon-Like Peptide-1 Agonists Protect Pancreatic β-Cells From Lipotoxic Endoplasmic Reticulum Stress Through Upregulation of BiP and JunB. Diabetes, 2009, 58, 2851-2862.	0.3	202
36	An update on lipotoxic endoplasmic reticulum stress in pancreatic β-cells. Biochemical Society Transactions, 2008, 36, 909-915.	1.6	69

#	Article	IF	CITATIONS
37	The pentose phosphate pathway in Trypanosoma cruzi: a potential target for the chemotherapy of Chagas disease. Anais Da Academia Brasileira De Ciencias, 2007, 79, 649-663.	0.3	44
38	The glucose-6-phosphate dehydrogenase from Trypanosoma cruzi: Its role in the defense of the parasite against oxidative stress. Molecular and Biochemical Parasitology, 2006, 149, 170-181.	0.5	43