Valeria Cavaliere

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3958711/publications.pdf

Version: 2024-02-01

516710 454955 1,151 32 16 30 citations h-index g-index papers 32 32 32 1579 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Retrotransposons Down- and Up-Regulation in Aging Somatic Tissues. Cells, 2022, 11, 79.	4.1	4
2	The role of transposable elements activity in aging and their possible involvement in laminopathic diseases. Ageing Research Reviews, 2020, 57, 100995.	10.9	41
3	The Impact of Drosophila Awd/NME1/2 Levels on Notch and Wg Signaling Pathways. International Journal of Molecular Sciences, 2020, 21, 7257.	4.1	1
4	Silencing of Euchromatic Transposable Elements as a Consequence of Nuclear Lamina Dysfunction. Cells, 2020, 9, 625.	4.1	6
5	Vps28 Is Involved in the Intracellular Trafficking of Awd, the Drosophila Homolog of NME1/2. Frontiers in Physiology, 2019, 10, 983.	2.8	4
6	Comparative Expression Profiling of Wild Type Drosophila Malpighian Tubules and von Hippel-Lindau Haploinsufficient Mutant. Frontiers in Physiology, 2019, 10, 619.	2.8	2
7	A polydnavirus-encoded ANK protein has a negative impact on steroidogenesis and development. Insect Biochemistry and Molecular Biology, 2018, 95, 26-32.	2.7	21
8	Extracellular NME proteins: a player or a bystander?. Laboratory Investigation, 2018, 98, 248-257.	3.7	29
9	Evidence for a novel function of Awd in maintenance of genomic stability. Scientific Reports, 2017, 7, 16820.	3.3	7
10	Dynamin controls extracellular level of Awd/Nme1 metastasis suppressor protein. Naunyn-Schmiedeberg's Archives of Pharmacology, 2016, 389, 1171-1182.	3.0	13
11	Drosophila 4EHP is essential for the larval–pupal transition and required in the prothoracic gland for ecdysone biosynthesis. Developmental Biology, 2016, 410, 14-23.	2.0	16
12	The ecdysone receptor signalling regulates microvilli formation in follicular epithelial cells. Cellular and Molecular Life Sciences, 2016, 73, 409-425.	5. 4	7
13	Notch signaling during development requires the function of awd, the Drosophila homolog of human metastasis suppressor gene Nm23. BMC Biology, 2014, 12, 12.	3.8	28
14	A Polydnavirus ANK Protein Acts as Virulence Factor by Disrupting the Function of Prothoracic Gland Steroidogenic Cells. PLoS ONE, 2014, 9, e95104.	2.5	19
15	Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18466-18471.	7.1	531
16	The impact on microtubule network of a bracovirus lîºB-like protein. Cellular and Molecular Life Sciences, 2010, 67, 1699-1712.	5 . 4	21
17	Drosophila VHL tumor-suppressor gene regulates epithelial morphogenesis by promoting microtubule and aPKC stability. Development (Cambridge), 2010, 137, 1493-1503.	2.5	20
18	Genetic, functional and evolutionary characterization of scox, the Drosophila melanogaster ortholog of the human SCO1 gene. Mitochondrion, 2010, 10, 433-448.	3.4	20

#	Article	IF	Citations
19	<i>Drosophila VHL</i> tumor-suppressor gene regulates epithelial morphogenesis by promoting microtubule and aPKC stability. Journal of Cell Science, 2010, 123, e1-e1.	2.0	O
20	Cell Survival and Polarity of Drosophila Follicle Cells Require the Activity of Ecdysone Receptor B1 Isoform. Genetics, 2009, 181, 165-175.	2.9	36
21	Vasa protein is localized in the germ cells and in the oocyte-associated pyriform follicle cells during early oogenesis in the lizard Podarcis sicula. Development Genes and Evolution, 2009, 219, 361-367.	0.9	13
22	EcR-B1 and Usp nuclear hormone receptors regulate expression of the VM32E eggshell gene during Drosophila oogenesis. Developmental Biology, 2009, 328, 541-551.	2.0	39
23	Building up the <i>Drosophila</i> eggshell: First of all the eggshell genes must be transcribed. Developmental Dynamics, 2008, 237, 2061-2072.	1.8	75
24	Egfr signaling modulates VM32E gene expression during Drosophila oogenesis. Development Genes and Evolution, 2007, 217, 529-540.	0.9	6
25	Dpp signaling down-regulates the expression of VM32E eggshell gene during Drosophila oogenesis. Developmental Dynamics, 2006, 235, 768-775.	1.8	6
26	dAkt kinase controls follicle cell size duringDrosophila oogenesis. Developmental Dynamics, 2005, 232, 845-854.	1.8	28
27	Specific domains drive VM32E protein distribution and integration in <i>Drosophila</i> eggshell layers. Journal of Cell Science, 2001, 114, 2819-2829.	2.0	32
28	Spatial activation and repression of the Drosophila vitelline membrane geneVM32E are switched by a complex complex is regulatory system. Developmental Dynamics, 2000, 218, 499-506.	1.8	9
29	Apoptosis of nurse cells at the late stages of oogenesis of Drosophila melanogaster. Development Genes and Evolution, 1998, 208, 106-112.	0.9	85
30	A Membrane Guanylate Cyclase Drosophila Homolog Gene Exhibits Maternal and Zygotic Expression. Developmental Biology, 1993, 159, 450-461.	2.0	25
31	Genetic and molecular analysis of maternal information in region 32 ofDrosophila melanogaster. Molecular Reproduction and Development, 1991, 28, 307-317.	2.0	7
32	Complete reversion of the abo phenotype in D. melanogaster occurs only when the blood transposon is lost from region 32E. Molecular Genetics and Genomics, 1991, 230, 433-441.	2.4	0